The Shack–Hartmann wavefront sensor (SHWFS) is a standard detector used in the measurement of a light wave's wavefront shape. However, its relatively high price restricts its use as an educational tool in instructional optics laboratories. In this work, we show how a low-cost educational SHWFS can be assembled using spare parts and also provide the computational codes necessary to analyze the obtained data. We demonstrate the utility of our sensor by measuring the collimation of a beam, comparing the shape of sample spherical and cylindrical wavefronts, and demonstrating some effects of lens aberrations. We also discuss the spatial resolution and measurement uncertainties of this sensor. The experimental results are in excellent agreement with theoretical calculations. The outcomes of this work can enhance the efficiency of instructional optics laboratories and enrich the knowledge of students regarding important concepts in classical optics.

1.
E.
Hecht
,
Optics
, 5th ed. (
Pearson
,
2017
).
2.
C.
Dainty
, “
Instrumentation for adaptive optics
,” in
Handbook of Visual Optics
, edited by
P.
Artal
(
CRC Press
,
2017
), Chap. 1.
3.
M.
Nicolle
,
T.
Fusco
,
G.
Rousset
, and
V.
Michau
, “
Improvement of Shack–Hartmann wave-front sensor measurement for extreme adaptive optics
,”
Opt. Lett.
29
(
23
),
2743
2745
(
2004
).
4.
D. R.
Neal
,
P.
Pulaski
,
T. D.
Raymond
,
D. A.
Neal
,
Q.
Wang
, and
U.
Griesmann
, “
Testing highly aberrated large optics with a Shack-Hartmann wavefront sensor
,” in
Advanced Wavefront Control: Methods, Devices, and Applications
, edited by
J. D.
Gonglewski
,
M. A.
Vorontsov
, and
M. T.
Gruneisen
(
SPIE
,
2003
), Vol.
5162
, pp.
129
138
.
5.
X.
Cheng
,
L.
Yan
,
L.
Liu
,
J.
Cao
,
Y.
Lin
, and
Q.
Hao
, “
Fabrication-error analysis of injection-molded aspheric elements using typical aberration terms in transmitted wavefront with Shack–Hartmann wavefront-sensing measurement
,”
Opt. Eng.
59
(
12
),
123102
(
2020
).
6.
J. A.
Koch
et al, “
Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications
,”
Appl. Opt.
39
(
25
),
4540
4546
(
2000
).
7.
T. O.
Salmon
,
L. N.
Thibos
, and
A.
Bradley
, “
Comparison of the eye's wave-front aberration measured psychophysically and with the Shack–Hartmann wave-front sensor
,”
J. Opt. Soc. Am. A
15
(
9
),
2457
2465
(
1998
).
8.
E.
Moreno-Barriuso
and
R.
Navarro
, “
Laser ray tracing versus Hartmann–Shack sensor for measuring optical aberrations in the human eye
,”
J. Opt. Soc. Am. A
17
(
6
),
974
985
(
2000
).
9.
C.
Li
,
G.
Hall
,
D.
Zhu
,
H.
Li
,
K. W.
Eliceiri
, and
H.
Jiang
, “
Three-dimensional surface profile measurement of microlenses using the Shack–Hartmann wavefront sensor
,”
J. Microelectromech. Syst.
21
(
3
),
530
540
(
2012
).
10.
T.
Williams
,
The Optical Transfer Function of Imaging Systems
, 1st ed. (
Routledge
,
1999
).
11.
T. J.
Bukowski
,
S.
O'Sullivan
,
M.
Kalensky
,
D.
Getts
,
E. M.
Bates
,
K.
Miller
, and
S.
Gordeyev
, “
Optical-turbulence characterization of a littoral test environment using a Shack-Hartmann wavefront sensor
,” in
Unconventional Imaging, Sensing, and Adaptive Optics 2023
, edited by
J. J.
Dolne
,
M. F.
Spencer
, and
S. R.
Bose-Pillai
(
SPIE
,
2023
), Vol.
12693
, p.
126930Q
.
12.
D. R.
Neal
and
J.
Mansell
, “
Application of Shack-Hartmann wavefront sensors to optical system calibration and alignment
,” in
Adaptive Optics for Industry and Medicine
(
Academia
,
2000
), pp.
234
240
.
13.
J.
Pfund
and
J.
Schwider
, “
Laser beam characterization by using a Shack-Hartmann sensor
,” in
Conference on Lasers and Electro-Optics Europe
(
Optica Publishing Group
,
2000
), p.
CWF119
.
14.
R. W.
Bowman
,
A. J.
Wright
, and
M. J.
Padgett
, “
An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers
,”
J. Opt.
12
(
12
),
124004
(
2010
).
15.
J. F.
Hartmann
, “Objektivuntersuchungen,”
Z. Instrumentenkd.
24
, 1–21, 33–47, 97–117 (1904).
16.
B. C.
Platt
and
R.
Shack
, “
History and principles of Shack-Hartmann wavefront sensing
,”
J. Refract. Surg.
17
(
5
),
S573
S577
(
2001
).
18.
Piotr
Migdał
,
Piotr
Fita
,
Czesław
Radzewicz
, and
Łukasz
Mazurek
, “
Wavefront sensor with Fresnel zone plates for use in an undergraduate laboratory
,”
Am. J. Phys.
76
(
3
),
229
235
(
2008
).
20.
See <https://www.octave.org> for
Octave
.
21.
M.
Harker
and
P.
O'Leary
, “
Direct regularized surface reconstruction from gradients for industrial photometric stereo
,”
Comput. Ind.
64
(
9
),
1221
1228
(
2013
).
24.
See <https://github.com/wcgrizolli/surface_from_gradient> for
surface from gradient scripts for python
.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.