We present an undergraduate instructional laboratory experiment that introduces students to the most well-known van der Waals material, graphene. Like all van der Waals materials, graphene is a crystal that can be peeled into layers, in some cases, down to atomic thicknesses. In this experiment, students first fabricate a sample consisting of few-layer graphene flakes atop of a silicon wafer substrate using the mechanical exfoliation method. The students then use a microscope setup to acquire images of the sample under white-light and LED illumination. These images are analyzed to produce optical contrast values (a measure of the reflectance of the graphene flakes) as a function of illumination wavelength. A theoretical model for optical contrast is developed based on thin-film interference and the resulting theory and experiment are compared, yielding a value for the graphene flake's thickness. This experiment is designed for advanced instructional laboratory and upper level optics courses. It may also be simplified into a qualitative introductory physics laboratory, demonstration, or outreach workshop activity.

1.
Pulickel
Ajayan
,
Philip
Kim
, and
Kaustav
Banerjee
, “
Two-dimensional van der Waals materials
,”
Phys. Today
69
(
9
),
38
44
(
2016
).
2.
K. S.
Novoselov
,
A.
Mishchenko
,
A.
Carvalho
, and
A. H.
Castro Neto
, “
2D materials and van der Waals heterostructures
,”
Science
353
(
6298
),
aac9439
(
2016
).
3.
Matthew
Yankowitz
,
Qiong
Ma
,
Pablo
Jarillo-Herrero
, and
Brian J.
LeRoy
, “
van der Waals heterostructures combining graphene and hexagonal boron nitride
,”
Nat. Rev. Phys.
1
(
2
),
112
125
(
2019
).
4.
Ekaterina
Pomerantseva
and
Yury
Gogotsi
, “
Two-dimensional heterostructures for energy storage
,”
Nat. Energy
2
(
7
),
17089
(
2017
).
5.
Sonali
Das
,
Deepak
Pandey
,
Jayan
Thomas
, and
Tania
Roy
, “
The role of graphene and other 2D materials in solar photovoltaics
,”
Adv. Mater.
31
(
1
),
1802722
(
2018
).
6.
Hui Lei
Hou
,
Cosimo
Anichini
,
Paolo
Samorì
,
Alejandro
Criado
, and
Maurizio
Prato
, “
2D Van der Waals heterostructures for chemical sensing
,”
Adv. Funct. Mater.
32
(
49
),
2207065
(
2022
).
7.
Maryam
Derakhshi
,
Sahar
Daemi
,
Pegah
Shahini
,
Afagh
Habibzadeh
,
Ebrahim
Mostafavi
, and
Ali
Akbar Ashkarran
, “
Two-dimensional nanomaterials beyond graphene for biomedical applications
,”
J. Funct. Biomater.
13
(
1
),
27
(
2022
).
8.
Satoru
Masubuchi
,
Masataka
Morimoto
,
Sei
Morikawa
,
Momoko
Onodera
,
Yuta
Asakawa
,
Kenji
Watanabe
,
Takashi
Taniguchi
, and
Tomoki
Machida
, “
Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices
,”
Nat. Commun.
9
(
1
),
1413
(
2018
).
9.
Qinghua
Zhao
,
Tao
Wang
,
Yu
Kyoung Ryu
,
Riccardo
Frisenda
, and
Andres
Castellanos-Gomez
, “
An inexpensive system for the deterministic transfer of 2D materials
,”
J. Phys. Mater.
3
(
1
),
016001
(
2020
).
10.
Patricia
Gant
,
Felix
Carrascoso
,
Qinghua
Zhao
,
Yu Kyoung
Ryu
,
Michael
Seitz
,
Ferry
Prins
,
Riccardo
Frisenda
, and
Andres
Castellanos-Gomez
, “
A system for the deterministic transfer of 2D materials under inert environmental conditions
,”
2D Mater.
7
(
2
),
025034
(
2020
).
11.
Sergey G.
Martanov
,
Natalia K.
Zhurbina
,
Mikhail V.
Pugachev
,
Aliaksandr I.
Duleba
,
Mark A.
Akmaev
,
Vasilli V.
Belykh
, and
Aleksandr Y.
Kuntsevich
, “
Making van der Waals heterostructures assembly accessible to everyone
,”
Nanomater
10
(
11
),
2305
(
2020
).
12.
Kanokwan
Buapan
,
Ratchanok
Somphonsane
,
Tinna
Chiawchan
, and
Harihara
Ramamoorthy
, “
Versatile, low-cost, and portable 2D material transfer setup with a facile and highly efficient DIY inert-atmosphere glove compartment option
,”
ACS Omega
6
(
28
),
17952
17964
(
2021
).
13.
Zhuiri
Peng
,
Runfeng
Lin
,
Zheng
Li
,
Langlang
Xu
,
Xiangxiang
Yu
,
Xinyu
Huang
,
Wenhao
Shi
,
Xiao
He
,
Xiaohan
Meng
,
Lei
Tong
,
Xiangshui
Miao
, and
Lei
Ye
, “
Two-dimensional materials-based integrated hardware
,”
Sci. China Inf. Sci.
66
(
6
),
160401
(
2023
).
14.
David
Parobek
,
Ganesh
Shenoy
,
Feng
Zhou
,
Zhenbo
Peng
,
Michelle
Ward
, and
Haitao
Liu
, “
Synthesizing and characterizing graphene via Raman spectroscopy: An upper-level Undergraduate experiment that exposes students to Raman spectroscopy and a 2D nanomaterial
,”
J. Chem. Educ.
93
(
10
),
1798
1803
(
2016
).
15.
Randy
Peterson
,
Johnny
Davenport
, and
Eugene
Donev
,
Experimenting With Graphene
[
The Advanced Laboratory Physics Association (ALPhA)
,
Salem, OR
,
2022
].
16.
Ken L.
Turner
, Jr.
,
Adam
Hoffman
,
Scott
Breitfelder
,
Hayli
Wolf
,
Isabella
Metcalf
, and
Alexandra
Jones
, “
Graphene: An adaptable engineering design project
,”
Inquiry Educ.
12
(
1
),
2154
6262
(
2020
).
17.
R. R.
Nair
,
P.
Blake
,
A. N.
Grigorenko
,
K. S.
Novoselov
,
T. J.
Booth
,
T.
Stauber
,
N. M. R.
Peres
, and
A. K.
Geim
, “
Fine structure constant defines visual transparency of graphene
,”
Science
320
(
5881
),
1308
1308
(
2008
).
18.
Kin Fai
Mak
,
Matthew Y.
Sfeir
,
Yang
Wu
,
Chun Hung
Lui
,
James A.
Misewich
, and
Tony F.
Heinz
, “
Measurement of the optical conductivity of graphene
,”
Phys. Rev. Lett.
101
(
19
),
196405
(
2008
).
19.
P.
Blake
,
E. W.
Hill
,
A. H.
Castro Neto
,
K. S.
Novoselov
,
D.
Jiang
,
R.
Yang
,
T. J.
Booth
, and
A. K.
Geim
, “
Making graphene visible
,”
Appl. Phys. Lett.
91
(
6
),
063124
(
2007
).
20.
Roman V.
Gorbachev
,
Ibtsam
Riaz
,
Rahul R.
Nair
,
Rashid
Jalil
,
Liam
Britnell
,
Branson D.
Belle
,
Ernie W.
Hill
,
Kostya S.
Novoselov
,
Kenji
Watanabe
,
Takashi
Taniguchi
,
Andre K.
Geim
, and
Peter
Blake
, “
Hunting for monolayer boron nitride: Optical and Raman signatures
,”
Small
7
(
4
),
465
468
(
2011
).
21.
M. M.
Benameur
,
B.
Radisavljevic
,
J. S.
Héron
,
S.
Sahoo
,
H.
Berger
, and
A.
Kis
, “
Visibility of dichalcogenide nanolayers
,”
Nanotechnology
22
(
12
),
125706
(
2011
).
22.
Dan
Bing
,
Yingying
Wang
,
Jing
Bai
,
Ruxia
Du
,
Guoqing
Wu
, and
Liyan
Liu
, “
Optical contrast for identifying the thickness of two-dimensional materials
,”
Opt. Commun.
406
,
128
138
(
2018
).
23.
Yanan
Wang
,
Vivian
Zhou
,
Yong
Xie
,
Xu-Qian
Zheng
, and
Philip X.-L.
Feng
, “
Optical contrast signatures of hexagonal boron nitride on a device platform
,”
Opt. Mater. Express
9
(
3
),
1223
1232
(
2019
).
24.
Jiayu
Lei
,
Jiafan
Qu
,
Peng
Wang
,
Hu
Jiang
,
Hongyan
Shi
,
Xiudong
Sun
, and
Bo
Gao
, “
A facile method for precise layer number identification of two-dimensional materials through optical images
,”
Opt. Commun.
440
,
21
25
(
2019
).
25.
Eugene Hecht
,
Optics
, 5th ed. (
Pearson
,
Harlow, England
,
2017
), pp.
434
435
.
26.
Sosan
Cheon
,
Kenneth David
Kihm
,
Hong Goo
Kim
,
Gyumin
Lim
,
Jae Sung
Park
, and
Joon Sik
Lee
, “
How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints
,”
Sci. Rep.
4
(
1
),
6364
(
2014
).
27.
Tedi
Qafko
,
Trevyn
Larson
, and
Andrew
Seredinski
, “
Determination of hBN thickness by optical contrast
,” in
ASEE Northeast Conference Proceedings
,
2022
.
28.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
(
5696
),
666
669
(
2004
).
29.
Jong Hyun
Jung
,
Cheol Hwan
Park
, and
Jisoon
Ihm
, “
A rigorous method of calculating exfoliation energies from first principles
,”
Nano Lett.
18
(
5
),
2759
2765
(
2018
).
30.
David F.
Edwards
, “
Silicon (Si)
,” in
Handbook of Optical Constants of Solids Five-Volume Set: Handbook of Thermo-Optic Coefficients of Optical Materials with Applications
, edited by
E. D.
Palik
and
G.
Ghosh
(
Elsevier Science
,
Burlington, VT
,
1997
), p.
547
.
31.
I. H.
Malitson
, “
Interspecimen comparison of the refractive index of fused silica
,”
J. Opt. Soc. Am.
55
(
10
),
1205
1209
(
1965
).
32.
L. M.
Malard
,
M. A.
Pimenta
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
, “
Raman spectroscopy in graphene
,”
Phys. Rep.
473
(
5–6
),
51
87
(
2009
).
33.
Cameron J.
Shearer
,
Ashley D.
Slattery
,
Andrew J.
Stapleton
,
Joseph G.
Shapter
, and
Christopher T.
Gibson
, “
Accurate thickness measurement of graphene
,”
Nanotechnology
27
(
12
),
125704
(
2016
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.