The problem of the two-dimensional motion of a charged particle with constant mass in the presence of a uniform constant perpendicular magnetic field features in several undergraduate and graduate quantum physics textbooks. This problem is very important to studies of two-dimensional materials that manifest quantum Hall behavior, as evidenced by several major discoveries over the last few years. Many real experimental samples are more complicated due to the anisotropic mass of the electrons. In this work, we provide the exact solution to this problem by means of a clever scaling of coordinates. Calculations are done for a symmetric gauge of the magnetic field. This study allows a broad audience of students and teachers to understand the mathematical techniques that lead to the solution of this quantum problem.

1.
L. D.
Landau
, “
Diamagnetism of metals
,”
Z. Phys.
64
,
629
637
(
1930
).
2.
W. J.
de Haas
and
P. M.
van Alphen
, “
The dependence of the susceptibility of diamagnetic metals upon the field
,”
Proc. R. Acad. Amsterdam
33
,
1106
(
1930
).
3.
L.
Shubnikov
and
W. J.
de Haas
, “
Magnetic resistance increase in single crystals of bismuth at low temperatures
,”
Proc. R. Acad. Amsterdam
33
,
130
(
1930
).
4.
K. V.
Klitzing
,
G.
Dorda
, and
M.
Pepper
, “
New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance
,”
Phys. Rev. Lett.
45
(
6
),
494
497
(
1980
).
5.
D. C.
Tsui
,
H. L.
Stormer
, and
A. C.
Gossard
, “
Two-dimensional magnetotransport in the extreme quantum limit
,”
Phys. Rev. Lett.
48
(
22
),
1559
1562
(
1982
).
6.
R. B.
Laughlin
, “
Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations
,”
Phys. Rev. Lett.
50
(
18
),
1395
1398
(
1983
).
7.
J. K.
Jain
, “
Composite-fermion approach for the fractional quantum Hall effect
,”
Phys. Rev. Lett.
63
(
2
),
199
202
(
1989
).
8.
V. P.
Gusynin
and
S. G.
Sharapov
, “
Unconventional integer quantum Hall effect in graphene
,”
Phys. Rev. Lett.
95
(
14
),
146801
(
2005
).
9.
See https://www.nobelprize.org/ for “
The Nobel Foundation.
10.
S.
Gasiorowicz
,
Quantum Physics
, 3rd ed. (
Wiley
,
Hoboken, NJ
,
2003
).
11.
R. L.
Liboff
,
Introductory Quantum Mechanics
, 4th ed. (
Addison Wesley
,
San Francisco, CA
,
2003
).
12.
B. H.
Bransden
and
C. J.
Joachain
,
Quantum Mechanics
, 2nd ed. (
Prentice Hall
,
Harlow, England
,
2000
).
13.
Md. S.
Hossain
,
M. K.
Ma
,
Y. J.
Chung
,
L. N.
Pfeiffer
,
K. W.
West
,
K. W.
Baldwin
, and
M.
Shayegan
, “
Unconventional anisotropic even-denominator fractional quantum Hall state in a system with mass anisotropy
,”
Phys. Rev. Lett.
121
(
25
),
256601
(
2018
).
14.
M.
Shayegan
,
E. P.
De Poortere
,
O.
Gunawan
,
Y. P.
Shkolnikov
,
E.
Tutuc
, and
K.
Vakili
, “
Two-dimensional electrons occupying multiple valleys in AlAs
,”
Phys. Status Solidi B
243
,
3629
3642
(
2006
).
15.
K.
Eng
,
R. N.
McFarland
, and
B. E.
Kane
, “
Integer quantum Hall effect on a six-valley hydrogen-passivated silicon (111) surface
,”
Phys. Rev. Lett.
99
(
1
),
016801
(
2007
).
16.
V. A.
Chitta
,
W.
Desrat
,
D. K.
Maude
,
B. A.
Piot
,
N. F.
Oliveira
, Jr.
,
P. H. O.
Rappl
,
A. Y.
Ueta
, and
E.
Abramof
, “
Integer quantum Hall effect in a PbTe quantum well
,”
Physica E
34
,
124
127
(
2006
).
17.
B. E.
Feldman
,
M. T.
Randeria
,
A.
Gyenis
,
F.
Wu
,
H.
Ji
,
R. J.
Cava
,
A. H.
MacDonald
, and
A.
Yazdani
, “
Observation of a nematic quantum Hall liquid on the surface of bismuth
,”
Science
354
(
6310
),
316
321
(
2016
).
18.
F. D. M.
Haldane
, “
Geometrical description of the fractional quantum Hall effect
,”
Phys. Rev. Lett.
107
(
11
),
116801
(
2011
).
19.
O.
Ciftja
, “
Detailed solution of the problem of Landau states in a symmetric gauge
,”
Eur. J. Phys.
41
(
3
),
035404
(
2020
).
20.
The Quantum Hall Effect
, 2nd ed., edited by
R. E.
Prange
and
S. M.
Girvin
(
Springer-Verlag
,
New York, NY
,
1990
).
21.
O.
Ciftja
,
V.
Livingston
, and
E.
Thomas
, “
Cyclotron motion of a charged particle with anisotropic mass
,”
Am. J. Phys.
85
,
359
363
(
2017
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.