We study four spins on a ring coupled through competing Heisenberg interactions between nearest neighbors, J, and next-nearest neighbors, . From the pedagogical point of view, dealing with few spins illustrates how to add more than two angular momenta in a systematic way. The spectrum is obtained by using the rules for addition of four angular momenta, which allows us to follow the evolution of the ground state with α, characterized by level crossings and by spin–spin correlation functions. The reduced number of spins also allows us to illustrate how to quantify bipartite entanglement.
REFERENCES
1.
S.
Sachdev
, Quantum Phase Transitions
, 2nd ed. (
Cambridge U.P.
,
Cambridge, MA
, 2011
).2.
M.
Continentino
, Quantum Scaling in Many-Body Systems: An Approach to Quantum Phase Transitions
, 2nd ed. (
Cambridge U.P.
,
Cambridge, MA
, 2017
).3.
M. E.
Fisher
, “
Critical phenomena
,” in Proceedings of the Enrico Fermi International School of Physics
, edited by
M. S.
Green
(
Academic Press
,
New York
, 1971
), Vol.
51
.4.
M. N.
Barber
, “
Finite-size scaling
,” in Phase Transitions and Critical Phenomena
, edited by
C.
Domb
and
J. L.
Lebowitz
(
Academic Press
,
New York
, 1983
), Vol.
8
, p. 145
.5.
M. A.
Nielsen
and
I. L.
Chuang
, Quantum Computation and Quantum Information: 10th Anniversary Edition
(
Cambridge U.P.
,
Cambridge, MA
, 2010
).6.
E.
Chitambar
and
G.
Gour
, “
Quantum resource theories
,” Rev. Mod. Phys.
91
(2
), 025001
(2019
).7.
A.
Osterloh
,
L.
Amico
,
G.
Falci
, and
R.
Fazio
, “
Scaling of entanglement close to a quantum phase transition
,” Nature
416
(6881
), 608
–610
(2002
).8.
L.
Amico
,
R.
Fazio
,
A.
Osterloh
, and
V.
Vedral
, “
Entanglement in many-body systems
,” Rev. Mod. Phys.
80
(2
), 517
–576
(2008
).9.
A.
Messiah
, Quantum Mechanics
(
North-Holland
,
Amsterdam, The Netherlands
, 1970
), Vol.
2
, pp. 566
–569
.10.
C.
Cohen-Tannoudji
,
B.
Diu
, and
F.
Laloë
, Quantum Mechanics
, 1st ed. (
Wiley
,
New York, NY
, 1977
), pp. 139
–144
.11.
K.
Gottfried
and
T.
Yan
, Quantum Mechanics: Fundamentals
, Graduate Texts in Contemporary Physics (
Springer
,
New York
, 2003
), pp. 39
–52
.12.
C.
Cohen-Tannoudji
,
B.
Diu
, and
F.
Laloë
, Quantum Mechanics
, 1st ed. (
Wiley
,
New York, NY
, 1977
), pp. 295
–307
.13.
T.
Tonegawa
and
I.
Harada
, “
One-dimensional isotropic spin-1/2 Heisenberg magnet with ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor interactions
,” J. Phys. Soc. Jpn.
58
(8
), 2902
–2915
(1989
).14.
K.
Okamoto
and
K.
Nomura
, “
Fluid-dimer critical point in S = 1/2 antiferromagnetic Heisenberg chain with next nearest neighbor interactions
,” Phys. Lett. A
169
(6
), 433
–437
(1992
).15.
R.
Zinke
,
S.-L.
Drechsler
, and
J.
Richter
, “
Influence of interchain coupling on spiral ground-state correlations in frustrated spin-
Heisenberg chains
,” Phys. Rev. B
79
(9
), 094425
(2009
).16.
C. K.
Majumdar
and
D. K.
Ghosh
, “
On next-nearest neighbor interaction in linear chain. II
,” J. Math. Phys.
10
(8
), 1399
–1402
(1969
).17.
R. R.
dos Santos
and
R. B.
Stinchcombe
, “
Finite size scaling and crossover phenomena: The XY chain in a transverse field at zero temperature
,” J. Phys. A
14
(10
), 2741
–2757
(1981
).18.
E.
Dagotto
and
T. M.
Rice
, “
Surprises on the way from one- to two-dimensional quantum magnets: The ladder materials
,” Science
271
(5249
), 618
–623
(1996
).19.
D. A.
Meyer
and
N. R.
Wallach
, “
Global entanglement in multiparticle systems
,” J. Math. Phys.
43
(9
), 4273
–4278
(2002
).20.
T. R.
de Oliveira
,
G.
Rigolin
, and
M. C.
de Oliveira
, “
Genuine multipartite entanglement in quantum phase transitions
,” Phys. Rev. A
73
(1
), 010305
(2006
).21.
M.
Hase
,
I.
Terasaki
, and
K.
Uchinokura
, “
Observation of the spin-Peierls transition in linear Cu2+ (spin-1/2) chains in an inorganic compound CuGeO3
,” Phys. Rev. Lett
70
(23
), 3651
–3654
(1993
).22.
G.
Castilla
,
S.
Chakravarty
, and
V. J.
Emery
, “
Quantum magnetism of CuGeO3
,” Phys. Rev. Lett.
75
(9
), 1823
–1826
(1995
).23.
M.
Matsuda
and
K.
Katsumata
, “
Magnetic properties of a quasi-one-dimensional magnet with competing interactions: SrCuO2
,” J. Magn. Magn. Mater.
140–144
, 1671
–1672
(1995
).24.
A.
Berlie
and
I.
Terry
, “
Possible realization of the Majumdar-Ghosh point in the mineral Szenicsite
,” Phys. Rev. B
105
(22
), L220404
(2022
).25.
A.
Messiah
, Quantum Mechanics
(
North-Holland
,
Amsterdam, The Netherlands
, 1970
), Vol.
2
, pp. 560
–563
.26.
A.
Messiah
, Quantum Mechanics
(
North-Holland
,
Amsterdam, The Netherlands
, 1970
), Vol.
2
, pp. 510
–516
.© 2024 Author(s). Published under an exclusive license by American Association of Physics Teachers.
2024
Author(s)
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.