Post-Newtonian approximations have been successful in describing various astronomical phenomena that classical Newtonian gravity could not. One such phenomenon is the precession of the periapsis of elliptical orbits. Einstein originally solved the problem in 1916 and since then others have been applying the technique to numerous complex systems. However, not much attention has been given to studying the changes in the configuration space when switching from Newtonian to post-Newtonian mechanics. Here, we compare the sizes and topologies of the configuration spaces of both these approaches and further explore the likelihood of planetary collisions in other star systems when configuration space expansion due to general relativity is taken into account.

1.
J. B.
Marion
and
S. T.
Thornton
, “
Central-force motion
,” in
Classical Dynamics of Particles and Systems
, 4th ed. (
Saunders College Publications
,
New York
,
1995
), pp.
291
328
.
2.
A.
Einstein
, “
Die grundlage der allgemeinen relativitätstheorie
,”
Ann. Phys.
354
(
7
),
769
822
(
1916
).
3.
A.
Einstein
, “
The foundation of the general theory of relativity
,” in
The Principle of Relativity
(
Dover Publications Inc
.,
New York
,
1923
), pp.
109
164
.
4.
F. W.
Dyson
,
A. S.
Eddington
, and
C.
Davidson
, “
IX. A determination of the deflection of light by the Sun's gravitational field, from observations made at the total eclipse of May 29, 1919
,”
Philos. Trans. R. Soc. London, Ser. A
220
,
291
333
(
1997
).
5.
C. M.
Will
, “
On the unreasonable effectiveness of the post-Newtonian approximation in gravitational physics
,”
Proc. Natl. Acad. Sci. U. S. A.
108
(
15
),
5938
5945
(
2011
).
6.
H.
Asada
and
T.
Futamase
, “
Chapter 2. Post-Newtonian approximation: Its foundation and applications
,”
Prog. Theor. Phys. Suppl.
128
,
123
181
(
1997
).
7.
C. W.
Misner
,
K. S.
Thorne
,
J. A.
Wheeler
, and
D. I.
Kaiser
, “
Other theories of gravity and the post-Newtonian approximation
,” in
Gravitation
(
Princeton U. P.
,
San Francisco, CA
2017
), pp.
1066
1100
.
8.
L. D.
Landau
and
E. M.
Lifshitz
, “
The field of gravitating bodies
,” in
The Classical Theory of Fields: Course of Theoretical Physics
(
Pergamon International Library of Science
,
Oxford, UK
,
1975
), Vol.
2
, pp.
278
367
.
9.
J. M.
Pons
, “
Expanding the range of validity of the simplest computation of the perihelion precession in Schwarzschild spacetime
,”
Am. J. Phys.
92
(
1
),
23
28
(
2024
).
10.
R. A.
Hulse
and
J. H.
Taylor
, “
Discovery of a pulsar in a binary system
,”
Astrophys. J.
195
,
L51
L53
(
1975
).
11.
J. H.
Taylor
,
L. A.
Fowler
, and
P. M.
McCulloch
, “
Measurements of general relativistic effects in the binary pulsar PSR1913 + 16
,”
Nature
277
(
5696
),
437
440
(
1979
).
12.
W. L.
Burke
, “
Gravitational radiation damping of slowly moving systems calculated using matched asymptotic expansions
,”
J. Math. Phys.
12
(
3
),
401
418
(
1971
).
13.
L.
Blanchet
, “
Gravitational radiation from post-Newtonian sources and inspiralling compact binaries
,”
Living Rev. Relativ.
9
(
1
),
7
187
(
2006
).
14.
S. R.
Kane
,
D. R.
Ciardi
,
D. M.
Gelino
, and
K.
von Braun
, “
The exoplanet eccentricity distribution from Kepler planet candidates
,”
Mon. Not. R. Astron. Soc.
425
(
1
),
757
762
(
2012
).
15.
D.
Carrera
,
S. N.
Raymond
, and
M. B.
Davies
, “
Planet–planet scattering as the source of the highest eccentricity exoplanets
,”
Astron. Astrophys.
629
,
L7
(
2019
).
16.
G.
Sussman
,
Configuration Spaces, in Structure and Interpretation of Classical Mechanics
(
The MIT Press
,
Cambridge, MA
,
2001
).
17.
K.
Schwarzschild
, “
On the gravitational field of a mass point according to Einstein's theory
,”
Sitzungsber. Preuss. Akad. Wiss.
1916
,
189
196
(
1916
).
18.
K.-H.
Lo
,
K.
Young
, and
B. Y. P.
Lee
, “
Advance of perihelion
,”
Am. J. Phys.
81
(
9
),
695
702
(
2013
).
19.
R. S.
Park
,
W. M.
Folkner
,
A. S.
Konopliv
,
J. G.
Williams
,
D. E.
Smith
, and
M. T.
Zuber
, “
Precession of Mercury's perihelion from ranging to the MESSENGER spacecraft
,”
Astron. J.
153
(
3
),
121
127
(
2017
).
20.
See the supplementary material online for theoretical exploration of the configuration space of an Einsteinian precessing orbit with a rational alpha and discussions regarding the differences in topology between the rational and irrational alpha configuration spaces.
21.
L. A.
McFadden
and
R. P.
Binzel
, “
Chapter 14—Near-Earth objects
,” in
Encyclopedia of the Solar System
, 2nd ed., edited by
L.-A.
McFadden
,
P. R.
Weissman
, and
T. V.
Johnson
(
Academic Press
,
San Diego
,
2007
), pp.
283
300
.
22.
M.
Mayor
,
S.
Udry
,
D.
Naef
,
F.
Pepe
,
D.
Queloz
,
N. C.
Santos
, and
M.
Burnet
, “
The CORALIE survey for southern extra-solar planets
,”
Astron. Astrophys.
415
(
1
),
391
402
(
2004
).
23.
M. H.
Lee
,
R. P.
Butler
,
D. A.
Fischer
,
G. W.
Marcy
, and
S. S.
Vogt
, “
On the 2: 1 Orbital resonance in the HD 82943 planetary system
,”
Astrophys J.
641
(
2
),
1178
1187
(
2006
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.