The Ehrenfest paradox for a rotating ring is examined and a kinematic resolution, within the framework of the special theory of relativity, is presented. Two different ways by which a ring can be brought from rest to rotational motion, whether by keeping the rest lengths of the blocks constituting the ring constant or by keeping their lengths in the inertial frame constant, are explored and their effect on the length of the material ring in the inertial as well as the co-rotating frame is checked. It is found that the ring tears at a point in the former case and remains intact in the latter case, but in neither of the two cases is the motion of the ring Born rigid during the transition from rest to rotational motion.

1.
M.
Born
, “
Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips
,”
Ann. Phys.
335
(
11
),
1
56
(
1909
).
2.
P.
Ehrenfest
, “Gleichförmige Rotation starrer Körper und Relativitätstheorie,”
Phys. Z.
10
,
918
(
1909
).
3.
G.
Herglotz
, “
Über den vom Standpunkt des Relativitätsprinzips aus als „starr” zu bezeichnenden Körper
,”
Ann. Phys.
336
(
2
),
393
415
(
1910
).
4.
F.
Noether
, “
Zur Kinematik des starren Körpers in der Relativtheorie
,”
Ann. Phys.
336
(
5
),
919
944
(
1910
).
5.
S. S.
Stepanov
, “Are rigid non-inertial frames of reference really rigid?” arXiv:1306.4775 [gr-qc].
6.
S. S.
Stepanov
,
Relativistic World: Mechanics
(
Walter de Gruyter GmbH & Co KG
,
Berlin
,
2018
), pp.
232
and
248–249
.
7.
N.
Sama
, “
On the Ehrenfest paradox
,”
Am. J. Phys.
40
(
3
),
415
418
(
1972
).
8.
H. E.
Ives
, “
Theory of the Double Fizeau Toothed Wheel
,”
J. Opt. Soc. Am.
29
(
11
),
472
478
(
1939
).
9.
G.
Cavalleri
, “
Solution of Ehrenfest's paradox for a relativistic rotating disk
,”
Nuovo Cimento B
53
(
2
),
415
432
(
1968
).
10.
V.
Cantoni
, “
What is wrong with relativistic kinematics?
,”
Nuovo Cimento B
57
(
1
),
220
223
(
1968
).
11.
Ø.
Grøn
, “Relativistic description of a rotating disk,”
Am. J. Phys.
43
(
10
),
869
876
(
1975
).
12.
T. A.
Weber
, “
A note on rotating coordinates in relativity
,”
Am. J. Phys.
65
(
6
),
486
487
(
1997
).
13.
M.
Planck
, “Gleichförmige Rotation und Lorentz–Kontraktion,”
Phys. Z.
11
,
294
(
1910
).
14.
Ø.
Grøn
, “Space geometry in a rotating reference frame: A historical appraisal,” in
Relativity in Rotating Frames,
edited by G. Rizzi and M. Ruggiero (
Springer
,
Berlin
,
2004
), Vol. 135, pp.
285
344
.
15.
S. K.
Ghosal
,
B.
Raychaudhuri
,
A. K.
Chowdhury
, and
M.
Sarker
, “Relativistic Sagnac Effect and Ehrenfest Paradox,”
Found. Phys.
33
(
6
),
981
1001
(
2003
).
16.
G.
Rizzi
and
M. L.
Ruggiero
, “Space geometry of rotating platforms: An operational approach,”
Found. Phys.
32
(
10
),
1525
1556
(
2002
).
17.
M. L.
Ruggiero
, “
Relative space: Space measurements on a rotating platform
,”
Eur. J. Phys.
24
(
6
),
563
573
(
2003
).
18.
Ø.
Grøn
, “Relativistic description of a rotating disk with angular acceleration,”
Found. Phys.
9
,
353
369
(
1979
).
19.
T.
Kaluza
, “Zur Relativitätstheorie,”
Phys. Z.
11
,
977
978
(
1910
).
20.
A.
Einstein
,
The Meaning of Relativity
(Chapman and Hall, London, 1980), pp.
58
59
.
21.
A. K.
Singal
, “
Lorentz contraction during acceleration from one inertial frame to another
,”
Am. J. Phys.
88
(
7
),
551
557
(
2020
).
22.
Ø.
Grøn
, “
Rotating frames in special relativity analyzed in light of a recent article by M. Strauss
,”
Int. J. Theor. Phys.
16
(
8
),
603
614
(
1977
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.