We present a theoretical study of a periodic vibrating string composed of a finite sequence of string segments connected periodically, with each segment characterized by a constant linear mass density. The main purpose is to provide a model that can mimic the properties of photonic or phononic crystals. This system displays frequency intervals for which wave propagation is not allowed (frequency bandgaps), in close analogy to photonic and phononic crystals. We discuss the behavior of these bandgaps when varying physical parameters, such as the values of the linear mass densities, the oscillation frequency, and the number of string segments constituting the entire system.

1.
E.
Yablonovitch
, “
Inhibited spontaneous emission in solid-state physics and electronics
,”
Phys. Rev. Lett.
58
(
20
),
2059
2062
(
1987
).
2.
S.
John
, “
Strong localization of photons in certain disordered dielectric superlattices
,”
Phys. Rev. Lett.
58
(
23
),
2486
2489
(
1987
).
3.
L.
Rayleigh
, “XXVI.
On the remarkable phenomenon of crystalline reflection described by Prof. Stokes
,”
London, Edinburgh, Dublin Philosoph. Mag. J. Sci.
26
(
160
),
256
265
(
1888
).
4.
J. D.
Joannopoulos
,
R. D.
Meade
, and
J. N.
Winn
,
Photonic Crystals: Molding the Flow of Light
(
Princeton U.P
.,
Princeton
,
1995
), Chaps. 4 and 7.
5.
B.
Schulkin
,
L.
Sztancsik
, and
J. F.
Federici
, “
Analytical solution for photonic band-gap crystals using Drude conductivity
,”
Am. J. Phys.
72
(
8
),
1051
1054
(
2004
).
6.
F.
Szmulowicz
, “
Analytic, graphical, and geometric solutions for photonic bandgaps
,”
Am. J. Phys.
72
(
11
),
1392
1396
(
2004
).
7.
W.
Guo
, “
Optical bandgaps as a result of destructive superposition of scattered waves
,”
Am. J. Phys.
74
(
7
),
595
599
(
2006
).
8.
G.
von Freymann
,
V.
Kitaev
,
B. V.
Lotsch
, and
G. A.
Ozin
, “
Bottom-up assembly of photonic crystals
,”
Chem. Soc. Rev.
42
(
7
),
2528
2554
(
2013
).
9.
A.
Cerjan
and
S.
Fan
, “
Complete photonic bandgaps in supercell photonic crystals
,”
Phys. Rev. A
96
(
5
),
051802(R)
(
2017
).
10.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Harcourt College Publishers
,
Orlando
,
1976
), Chap. 8.
11.
S. H.
Ryu
,
M. J.
Gim
,
W.
Lee
,
S. W.
Choi
, and
D. K.
Yoon
, “
Switchable photonic crystals using one-dimensional confined liquid crystals for photonic device application
,”
ACS Appl. Mater. Interfaces
9
(
3
),
3186
3191
(
2017
).
12.
H.
Wang
,
S. K.
Gupta
,
B.
Xie
, and
M.
Lu
, “
Topological photonic crystals: A review
,”
Front. Optoelectron.
13
(
1
),
50
72
(
2020
).
13.
J.
Joannopoulos
,
P.
Villeneuve
, and
S.
Fan
, “
Photonic crystals: Putting a new twist on light
,”
Nature
386
(
6621
),
143
149
(
1997
).
14.
A. C.
Arsenault
,
D. P.
Puzzo
,
I.
Manners
, and
G. A.
Ozin
, “
Photonic-crystal full-colour displays
,”
Nat. Photonics
1
(
8
),
468
472
(
2007
).
15.
H.
Xu
,
P.
Wu
,
C.
Zhu
,
A.
Elbaz
, and
Z. Z.
Gu
, “
Photonic crystal for gas sensing
,”
J. Mater. Chem. C
1
(
38
),
6087
6098
(
2013
).
16.
P.
Bermel
,
C.
Luo
,
L.
Zeng
,
L. C.
Kimerling
, and
J. D.
Joannopoulos
, “
Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals
,”
Opt. Express
15
(
25
),
16986
17000
(
2007
).
17.
E.
Matioli
,
E.
Rangel
,
M.
Iza
,
B.
Fleury
,
N.
Pfaff
,
J.
Speck
,
E.
Hu
, and
C.
Weisbuch
, “
High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals
,”
Appl. Phys. Lett.
96
(
3
),
031108
(
2010
).
18.
S. A.
Cerqueira
, Jr.
, “
Recent progress and novel applications of photonic crystal fibers
,”
Rep. Prog. Phys.
73
,
024401
(
2010
).
19.
A.
Bruyant
,
G.
Lérondel
,
P. J.
Reece
, and
M.
Gal
, “
All-silicon omnidirectional mirrors based on one-dimensional photonic crystals
,”
Appl. Phys. Lett.
82
(
19
),
3227
3229
(
2003
).
20.
C. I.
Aguirre
,
E.
Reguera
, and
A.
Stein
, “
Tunable colors in opals and inverse opal photonic crystals
,”
Adv. Funct. Mater.
20
(
16
),
2565
2578
(
2010
).
21.
K. L.
Yu
,
T. X.
Fan
,
S.
Lou
, and
D.
Zhang
, “
Biomimetic optical materials: Integration of nature's design for manipulation of light
,”
Prog. Mater. Sci.
58
(
6
),
825
873
(
2013
).
22.
M. M.
Sigalas
and
E. N.
Economou
, “
Elastic and acoustic wave band structure
,”
J. Sound Vib.
158
(
2
),
377
382
(
1992
).
23.
M. S.
Kushwaha
,
P.
Halevi
,
L.
Dobrzynski
, and
B.
Djafari-Rouhani
, “
Acoustic band structure of periodic elastic composites
,”
Phys. Rev. Lett.
71
(
13
),
2022
2025
(
1993
).
24.
D.
Richards
and
D. J.
Pines
, “
Passive reduction of gear mesh vibration using a periodic drive shaft
,”
J. Sound Vib.
264
(
2
),
317
342
(
2003
).
25.
José
Sánchez-Dehesa
,
Victor M.
Garcia-Chocano
,
Daniel
Torrent
,
Francisco
Cervera
,
Suitberto
Cabrera
, and
Francisco
Simon
, “
Noise control by sonic crystal barriers made of recycled materials
,”
J. Acoust. Soc. Am.
129
(
3
),
1173
1183
(
2011
).
26.
M. I.
Hussein
,
M. J.
Leamy
, and
M.
Ruzzene
, “
Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook
,”
Appl. Mech. Rev.
66
,
040802
(
2014
).
27.
Y. F.
Wang
,
Y. Z.
Wang
,
B.
Wu
,
W.
Chen
, and
Y. S.
Wang
, “
Tunable and active phononic crystals and metamaterials
,”
Appl. Mech. Rev.
72
,
040801
(
2020
).
28.
J.
Liu
,
H.
Guo
, and
T.
Wang
, “
A review of acoustic metamaterials and phononic crystals
,”
Crystals
10
(
4
),
305
(
2020
).
29.
Germano M.
Penello
, “
Progress in symmetric and asymmetric superlattice quantum well infrared photodetectors
,”
Ann. Phys.
531
,
1800462
(
2019
).
30.
A.
Haché
and
L.
Poirier
, “
Anomalous dispersion and superluminal group velocity in a coaxial photonic crystal: Theory and experiment
,”
Phys. Rev. E
65
(
3
),
036608
(
2002
).
31.
M. M.
Sánchez-López
,
J. A.
Davis
, and
K.
Crabtree
, “
Coaxial cable analogs of multilayer dielectric optical coatings
,”
Am. J. Phys.
71
(
12
),
1314
1319
(
2003
).
32.
A.
Haché
and
A.
Slimani
, “
A model coaxial photonic crystal for studying band structures, dispersion, field localization, and superluminal effects
,”
Am. J. Phys.
72
(
7
),
916
921
(
2004
).
33.
E. H.
El Boudouti
,
Y.
El Hassouani
,
B.
Djafari-Rouhani
, and
H.
Aynaou
, “
Two types of modes in finite size one-dimensional coaxial photonic crystals: General rules, and experimental evidence
,”
Phys. Rev. E
76
(
2
),
026607
(
2007
).
34.
E. H.
El Boudouti
,
Y.
El Hassouani
,
H.
Aynaou
,
B.
Djafari-Rouhani
,
A.
Akjouj
, and
V. R.
Velasco
, “
Electromagnetic wave propagation in quasi-periodic photonic circuits
,”
J. Phys.: Condens. Matter
19
(
24
),
246217
(
2007
).
35.
A.
Perrier
,
Y.
Guilloit
,
É. L.
Cren
, and
Y.
Dumeige
, “
A simple model system to study coupled photonic crystal microcavities
,”
Am. J. Phys.
89
(
5
),
538
545
(
2021
).
36.
J. S.
Walker
and
J.
Gathright
, “
Exploring one-dimensional quantum mechanics with transfer matrices
,”
Am. J. Phys.
62
(
5
),
408
422
(
1994
).
37.
R. B.
Balili
, “
Transfer matrix method in nanophotonics
,”
Int. J. Mod. Phys.
17
,
159
168
(
2012
).
38.
T.
Zhan
,
X.
Shi
,
Y.
Dai
,
X.
Liu
, and
J.
Zi
, “
Transfer matrix method for optics in graphene layers
,”
J. Phys.: Condens. Matter
25
(
21
),
215301
(
2013
).
39.
I.
Haddouche
and
L.
Cherbi
, “
Comparison of finite element and transfer matrix methods for numerical investigation of surface plasmon waveguides
,”
Opt. Commun.
382
,
132
137
(
2017
).
40.
J.
Zi
,
J.
Wan
, and
C.
Zhang
, “
Large frequency range of negligible transmission in one-dimensional photonic quantum well structures
,”
Appl. Phys. Lett
73
(
15
),
2084
2086
(
1998
).
41.
P.
Markoš
and
C. M.
Soukoulis
,
Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials
(
Princeton U.P
.,
Princeton
,
2008
), Chap. 1.
42.
P. A. D.
Gonçalves
and
N. M. R.
Peres
,
An Introduction to Graphene Plasmonics
(
World Scientific
,
Singapore
,
2016
), Sec. 2.4.
43.
P.
Pereyra
,
Fundamentals of Quantum Physics: Textbook for Students of Science and Engineering
(
Springer
,
Heidelberg
,
2012
), Sec. 4.1.
44.
A. P.
French
,
Vibrations and Waves
(
CRC Press
,
2017
), pp.
253
257
.
45.
M.
Born
and
E.
Wolf
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light
(
Pergamon Press
,
New York
,
1999
), Subsection 1.6.5.
46.
F.
Melde
, “
Ueber die Erregung stehender Wellen eines fadenförmigen Körpers
,”
Ann. Phys. Chem.
187
(
12
),
513
537
(
1860
).
47.
G.
Bozzo
,
F.
de Sabata
,
S.
Pistori
, and
F.
Monti
, “
Imaging and studying standing waves with a homemade Melde-type apparatus and information and communication technology (ICT)
,”
Phys. Teach.
57
(
9
),
612
615
(
2019
).
48.
J. L.
Le Carrou
,
D.
Chadefaux
,
L.
Seydoux
, and
B.
Fabre
, “
A low-cost high-precision measurement method of string motion
,”
J. Sound Vib.
333
(
17
),
3881
3888
(
2014
).
49.
V. L. B.
de Jesus
,
Experiments and Video Analysis in Classical Mechanics
(
Springer
,
Cham
,
2017
), p.
167
.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.