The Sommerfeld–Page equation describes the non-relativistic dynamics of a classical electron modeled by a sphere of finite size with a uniform surface charge density. It is a delay differential equation, and almost no exact solution of this equation was known until recently. However, progress has been made, and an analytical solution was recently found for an almost identical delay differential equation, which arose in the context of the mathematical modeling of the COVID-19 epidemics. Inspired by this research, we offer a pedagogical exposition of how one can find an analytical solution of the Sommerfeld–Page equation.
REFERENCES
1.
P.
Pearle
, in Electromagnetism: Paths to Research
, edited by
D.
Teplitz
(
Springer
,
Boston
, 1982
), pp. 211
–295
.2.
M.
Dresden
, in Renormalization: From Lorentz to Landau (and Beyond)
, edited by
L. M.
Brown
(
Springer
,
New York
, 1993
), pp. 29
–55
.3.
B. P.
Kosyakov
, Introduction to the Classical Theory of Particles and Fields
(
Springer-Verlag
,
Berlin
, 2007
).4.
A. D.
Yaghjian
, Relativistic Dynamics of a Charged Sphere: Updating the Lorentz-Abraham Model
(
Springer-Verlag
,
New York
, 2006
).5.
F.
Rohrlich
, Classical Charged Particles
, 3rd ed. (
World Scientific
,
Singapore
, 2007
).6.
H.
Spohn
, Dynamics of Charged Particles and Their Radiation Field
(
Cambridge University Press
,
Cambridge
, 2004
).7.
S.
Parrott
, Relativistic Electrodynamics and Differential Geometry
(
Springer-Verlag
,
Berlin
, 1987
).8.
S.
Coleman
, in Electromagnetism: Paths to Research
, edited by
D.
Teplitz
(
Springer
,
Boston
, 1982
), pp. 183
–210
.9.
J. L.
Jiménez
and
I.
Campos
, “
Models of the classical electron after a century
,” Found. Phys. Lett.
12
, 127
–146
(1999
).10.
T.
Erber
, “
The classical theories of radiation reaction
,” Fortschr. Phys.
9
(7
), 343
–392
(1961
).11.
R. P.
Feynman
, “
The development of the space-time view of quantum electrodynamics
,” Science
153
(3737
), 699
–708
(1966
).12.
T. G.
Blackburn
, “
Radiation reaction in electron–beam interactions with high-intensity lasers
,” Rev. Mod. Plasma Phys.
4
, 5
(2020
).13.
J.
Burby
and
T.
Klotz
, “
INVITED: Slow manifold reduction for plasma science
,” Commun. Nonlinear Sci. Numer. Simul.
89
, 105289
(2020
).14.
A.
Gonoskov
,
T. G.
Blackburn
,
M.
Marklund
, and
S. S.
Bulanov
, “
Charged particle motion and radiation in strong electromagnetic fields
,” Rev. Mod. Phys.
94
, 045001
(2022
).15.
L.
Dell'Anna
, “
Solvable delay model for epidemic spreading: The case of Covid-19 in Italy
,” Sci. Rep.
10
, 15763
(2020
).16.
D. J.
Griffiths
, Introduction to Electrodynamics
, 5th ed. (
Cambridge University Press
,
Cambridge
, 2023
).17.
A.
Sommerfeld
, “
Simplified deduction of the field and the force of an electron moving in any given way
,” Proc. R. Acad. Amsterdam
7
, 346
–367
(1905
); available at https://archive.org/details/proceedingsofsec71koni/page/346/mode/1up.18.
L.
Page
, “
Is a moving mass retarded by the reaction of its own radiation?
,” Phys. Rev.
11
(5
), 376
–400
(1918
).19.
H.
Levine
,
E. J.
Moniz
, and
D. H.
Sharp
, “
Motion of extended charges in classical electrodynamics
,” Am. J. Phys.
45
, 75
–78
(1977
).20.
D.
Bohm
and
M.
Weinstein
, “
The self-oscillations of a charged particle
,” Phys. Rev.
74
(12
), 1789
–1798
(1948
).21.
H.
Spohn
, J. Phys. A
44
, 485201
(2011
).22.
D. J.
Griffiths
,
T. C.
Proctor
, and
D. F.
Schroeter
, “
Abraham-Lorentz versus Landau-Lifshitz
,” Am. J. Phys.
78
, 391
–402
(2010
).23.
E.
Schmidt
, “
Über eine Klasse linearer funktionaler Differentialgleichungen
,” Math. Ann.
70
(4
), 499
–524
(1911
).24.
J.
Hale
, in Delay Differential Equations and Applications
, edited by
O.
Arino
,
M.
Hbid
, and
E. A.
Dads
(
Springer
,
Dordrecht
, 2006
), pp. 1
–28
.25.
J.
Hale
, Theory of Functional Differential Equations
(
Springer-Verlag
,
New York
, 1977
).26.
E. T.
Whittaker
, “Vito Volterra: 1860–1940,” J. London Math. Soc.
s1-16
, 131
–139
(1941
).27.
G.
Israel
and
A. M.
Gasca
, The Biology of Numbers: The Correspondence of Vito Volterra on Mathematical Biology, Science Networks: Historical Studies
(
Birkhäuser
,
Basel
, 2002
).28.
G. B.
Airy
, “
On certain conditions under which a perpetual motion is possible
,” Trans. Cambridge Philos. Soc.
3
, 369
(1830
); available at https://www.besslerwheel.com/airy/.29.
A.
Jenkins
, “
Self-oscillation
,” Phys. Rep.
525
(2
), 167
–222
(2013
).30.
J.-P.
Richard
, “
Time-delay systems: An overview of some recent advances and open problems
,” Automatica
39
(10
), 1667
–1694
(2003
).31.
E.
Pinney
, Ordinary Difference-Differential Equations
(
University of California Press
,
Berkeley
, 1958
).32.
M.
Atiyah
and
G. W.
Moore
, “
A shifted view of fundamental physics
,” Surv. Differential Geometry
15
(1
), 1
–16
(2010
).33.
R. E.
Bellman
and
K. L.
Cooke
, Differential-Difference Equations
(
RAND Corporation
,
Santa Monica
, 1963
).34.
35.
H.
Smith
, An Introduction to Delay Differential Equations with Applications to the Life Sciences
(
Springer
,
New York
, 2011
).36.
R. M.
Corless
,
G. H.
Gonnet
,
D. E. G.
Hare
,
D. J.
Jeffrey
, and
D. E.
Knuth
, “
On the LambertW function
,” Adv. Comput. Math.
5
(1
), 329
–359
(1996
).37.
T.
Dence
, Appl. Math.
4
, 887
–892
(2013
).38.
D. R.
Willé
and
C.
Baker
, “
The tracking of derivative discontinuities in systems of delay-differential equations
,” Appl. Numer. Math.
9
, 209
–222
(1992
).39.
K. B.
Oldham
and
J.
Spanier
, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order
(
Dover Publications
,
Mineola
, 2006
).40.
F(t) replaces V(t) in the delay equation (15).
41.
E. P.
Wigner
, “
The unreasonable effectiveness of mathematics in the natural sciences
,” Commun. Pure Appl. Math.
13
, 1
–14
(1960
).42.
I. Z.
Kiss
,
G.
Röst
, and
Z.
Vizi
, “
Generalization of pairwise models to non-Markovian epidemics on networks
,” Phys. Rev. Lett.
115
(7
), 078701
(2015
).43.
J.-T.
Hsiang
and
B.-L.
Hu
, Phys. Rev. D
106
, 125018
(2022
).44.
L. D.
Landau
and
E. M.
Lifschits
, “
The classical theory of fields
,” in Course of Theoretical Physics
, Vol.
2
(
Pergamon Press
,
Oxford
, 1975
).45.
L.
Bel
, in Relativistic Action at a Distance: Classical and Quantum Aspects
, edited by
J.
Llosa
(
Springer
,
Berlin
, 1982
), pp. 21
–49
.46.
H.
Spohn
, “
The critical manifold of the Lorentz-Dirac equation
,” Europhys. Lett.
50
(3
), 287
–292
(2000
).47.
C.
Chicone
,
S.
Kopeikin
,
B.
Mashhoon
, and
D.
Retzloff
, “
Delay equations and radiation damping
,” Phys. Lett. A
285
, 17
–26
(2001
).48.
C.
Chicone
, “
What are the equations of motion of classical physics?
,” Can. Appl. Math. Q.
10
, 15
–32
(2002
).49.
T. W. B.
Kibble
and
F. H.
Berkshire
, Classical Mechanics
, 5th ed. (
Imperial College Press
,
London
, 2004
).50.
P.
Caldirola
, “
A new model of classical electron
,” Nuovo Cimento
3
(S2
), 297
–343
(1956
).51.
S.
Esposito
and
G.
Salesi
, “
Fundamental times, lengths and physical constants: Some unknown contributions by Ettore Majorana
,” Ann. Phys.
522
(7
), 456
–466
(2010
).52.
S.
Hossenfelder
, “
Minimal length scale scenarios for quantum gravity
,” Living Rev. Rel.
16
, 2
(2013
).© 2024 Author(s). Published under an exclusive license by American Association of Physics Teachers.
2024
Author(s)
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.