We give a simple introduction to the properties and use of ultrastable optical cavities, which are increasingly common in atomic and molecular physics laboratories for stabilizing the frequency of lasers to linewidths at the kHz level or below. Although the physics of Fabry–Perot interferometers is part of standard optics curricula, the specificities of ultrastable optical cavities, such as their high finesse, fixed length, and the need to operate under vacuum, can make their use appear relatively challenging to newcomers. Our aim in this work is to bridge the gap between generic knowledge about Fabry–Perot resonators and the specialized literature about ultrastable cavities. The intended audience includes students setting up an ultrastable cavity in a research laboratory for the first time and instructors designing advanced laboratory courses on optics and laser stabilization techniques.

1.
T.
Bothwell
,
D.
Kedar
,
E.
Oelker
,
J. M.
Robinson
,
S. L.
Bromley
,
W. L.
Tew
,
J.
Ye
, and
C. J.
Kennedy
, “
JILA SrI optical lattice clock with uncertainty of
2.0 × 10 18,”
Metrologia
56
(
6
),
065004
(
2019
).
2.
S. M.
Brewer
,
J.-S.
Chen
,
A. M.
Hankin
,
E. R.
Clements
,
C. W.
Chou
,
D. J.
Wineland
,
D. B.
Hume
, and
D. R.
Leibrandt
, “
27Al+ quantum logic clock with a systematic uncertainty below
10 18,”
Phys. Rev. Lett.
123
(
3
),
033201
(
2019
).
3.
X.
Zheng
,
J.
Dolde
,
V.
Lochab
,
B. N.
Merriman
,
H.
Li
, and
S.
Kolkowitz
, “
Differential clock comparisons with a multiplexed optical lattice clock
,”
Nature
602
(
7897
),
425
430
(
2022
).
4.
K.
Khabarova
, “
Atomic clouds stabilized to measure dilation of time
,”
Nature
602
(
7897
),
391
392
(
2022
).
5.
J.
Aasi
et al, “
Advanced LIGO
,”
Classical Quantum Gravity
32
,
074001
(
2015
).
6.
M. J.
Martin
and
J.
Ye
, “
High-precision laser stabilization via optical cavities
,” in
Optical Coatings and Thermal Noise in Precision Measurement
, edited by
G. M.
Harry
,
T.
Bodiya
, and
R.
DeSalvo
(
Cambridge U. P
.,
Cambridge
,
2012
), pp.
237
258
.
7.
R. W.
Fox
,
C. W.
Oates
, and
L. W.
Hollberg
, “
Stabilizing diode lasers to high-finesse cavities
,” in
Cavity-Enhanced Spectroscopies
, edited by
R. D.
van Zee
and
J. P.
Looney
(
Academic Press
,
Cambridge
,
2002
), pp.
1
46
.
8.
F.
Riehle
,
Frequency Standards: Basics and Applications
(
Wiley-VCH
,
Weinheim
,
2003
).
9.
G.
Brooker
,
Modern Classical Optics
(
Oxford U. P
.,
Oxford
.
2002
).
10.
H.
Kogelnik
and
T.
Li
, “
Laser Beams and Resonators
,”
Appl. Opt.
5
(
10
),
1550
1567
(
1966
).
11.
We calculate the reflected intensity of Fig. 1(c) in the spirit of Fig. 4.20 in Ref. 8. To do this, we sum the contribution of each mode (m, n, p), approximated as a Lorentzian centered on the frequency ν m , n , p [see Eq. (5)], with a manually set amplitude that does not depend on the longitudinal mode index p but decreases monotonically with increasing m + n.
12.
C.
Fabre
,
R. G.
DeVoe
, and
R. G.
Brewer
, “
Ultrahigh-finesse optical cavities
,”
Opt. Lett.
11
(
6
),
365
367
(
1986
).
13.
We neglect variations in the radii of curvature of the mirror because they have a negligible effect relative to δn and δL, as can be calculated from Eq. (5). For example, the frequency change induced by a 1 μm change in the length of a 10 cm cavity is on the order of several GHz, whereas a 1 μm change in the radii of curvature of both mirrors changes the resonance frequency only by several kHz.
14.
J.
Millo
,
D. V.
Magalhaes
,
C.
Mandache
,
Y.
Le Coq
,
E. M. L.
English
,
P. G.
Westergaard
,
J.
Lodewyck
,
S.
Bize
,
P.
Lemonde
, and
G.
Santarelli
, “
Ultrastable lasers based on vibration insensitive cavities
,”
Phys. Rev. A
79
(
5
),
053829
(
2009
).
15.
E.
Wiens
,
Q.
Chen
,
I.
Ernsting
,
H.
Luckmann
,
U.
Rosowski
,
A.
Nevsky
, and
S.
Schiller
, “
A silicon single-crystal cryogenic optical resonator
,”
Opt. Lett.
39
(
11
),
3242
3245
(
2014
).
16.
D.
Kedar
, “
A fully crystalline cryogenic reference cavity
,” Ph.D. thesis (
University of Colorado
,
2023
); available at https://jila.colorado.edu/publications/theses.
17.
L.
Béguin
,
A.
Vernier
,
R.
Chicireanu
,
T.
Lahaye
, and
A.
Browaeys
, “
Direct measurement of the van der Waals interaction between two Rydberg atoms
,”
Phys. Rev. Lett.
110
(
26
),
263201
(
2013
).
18.
A.
Yariv
,
Quantum Electronics
(
John Wiley & Sons
,
Hoboken
,
1989
).
19.
See https://lightmachinery.com/optical-design-center/gaussian-beam-propagation/ for an example of an online Gaussian beam calculator (accessed August 2, 2023).
20.
E. D.
Black
, “
An introduction to Pound–Drever–Hall laser frequency stabilization
,”
Am. J. Phys.
69
(
1
),
79
87
(
2001
).
21.
A fiber EOM is used in laser-locking setups, as its high bandwidth allows for the creation of sidebands whose frequency f can be tuned all over the free spectral range of the cavity. This makes it possible, when locking such a sideband (say the lower one) on a (fixed) resonance ν cav of the cavity, to have the laser locked at ν cav + f, which can be adjusted at will (e.g. for spectroscopy) by changing the
microwave
frequency f. If frequency tuning of the laser is not needed, one can directly modulate the laser diode current to create the sidebands needed for PDH locking.
22.
See https://www.vescent.com/manuals/doku.php?id=d2:laser_servo for “
The Vescent D2-125 Manual
” (accessed May 10, 2023).
23.
Note that this is an in-loop measurement, which only provides a lower bound on the frequency noise. For a more accurate characterization of the noise, an independent ultrastable laser would be needed.
24.
S.
de Léséleuc
,
D.
Barredo
,
V.
Lienhard
,
A.
Browaeys
, and
T.
Lahaye
, “
Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states
,”
Phys. Rev. A
97
(
5
),
053803
(
2018
).
25.
See www.layertec.de for example the mirror sets for cavity ring-down spectroscopy in the Layertec catalog.
26.
J.
Poirson
,
F.
Bretenaker
,
M.
Vallet
, and
A.
Le Floch
, “
Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses
,”
J. Opt. Soc. Am. B
14
(
11
),
2811
2817
(
1997
).
27.
Z.
Li
,
R. G. T.
Bennett
, and
G. E.
Stedman
, “
Swept-frequency induced optical cavity ringing
,”
Opt. Commun.
86
(
1
),
51
57
(
1991
).
28.
K.
An
,
C.
Yang
,
R. R.
Dasari
, and
M. S.
Feld
, “
Cavity ring-down technique and its application to the measurement of ultraslow velocities
,”
Opt. Lett.
20
(
9
),
1068
1070
(
1995
).
29.
M. J.
Lawrence
,
B.
Willke
,
M. E.
Husman
,
E. K.
Gustafson
, and
R. L.
Byer
, “
Dynamic response of a Fabry–Perot interferometer
,”
J. Opt. Soc. Am. B
16
(
4
),
523
532
(
1999
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.