Among the several methods to compute the perihelion precession for bounded orbits in Schwarzschild spacetime, the simplest is to ignore a term in the equations of motion. This is currently justified under the assumption that the eccentricity of the orbit is small. For cases such as Mercury in our solar system, whose eccentricity is not small, this method seems not to be applicable. Yet it gives the right result, the reason being that the term that has been excluded, although responsible for first order—in the ratio of the Schwarzschild radius over the radial coordinate—corrections of the orbit, only produces completely negligible higher order corrections for the perihelion precession. We show this result by two different procedures. We claim, therefore, that as long as the aim of the computation is the perihelion precession, one can safely drop that term regardless of the magnitude of the eccentricity.

1.
A.
Einstein
, “
Explanation of the perihelion motion of Mercury from the General Theory of Relativity
,”
Sitzungsber. Preuss. Akad. Wiss.
1916
,
831
839
.
2.
U.
Le Verrier
, “
Théorie du Mouverment de Mercure
,”
Ann. de l'Observatoire Impérial de Paris
(
Mallet-Bachelier
,
Paris, France
,
1859
), Chap. 15.
3.
S.
Newcomb
, “
Discussions and results of observations on transits of Mercury from 1677 to 1881
,” in
Astronomical Papers Prepared for the Use of the American Ephemeris and Nautical Almanac
,
1882
, Vol.
50
.
4.
M. G.
Stewart
, “
Precession of the perihelion of Mercury's orbit
,”
Am. J. Phys.
73
(
8
),
730
734
(
2005
).
5.
J. L.
Synge
,
Relativity: The General Theory
(
North-Holland Publishing Company
,
Amsterdam
,
1960
).
6.
S.
Weinberg
,
Gravitation and Cosmology—Principles and Applications of the General Theory of Relativity
(
John Wiley & Sons, Inc
.,
1972
).
7.
C. W.
Misner
,
K. S.
Thorne
, and
J. A.
Wheeler
,
Gravitation
(
Freeman and Co
,
San Francisco
,
1973
).
8.
A.
Eddington
,
The Mathematical Theory of Relativity
(
Cambridge, University Press
,
Cambridge, UK
,
1923
).
9.
Kin-Ho
Lo
,
Kenneth
Young
, and
Benjamin Y. P.
Lee
, “
Advance of perihelion
,”
Am. J. Phys.
81
(
9
),
695
702
(
2013
).
10.
R. M.
Wald
,
General Relativity
(
University of Chicago Press
,
Chicago, IL
,
1984
).
11.
T.
Padmanabhan
,
Gravitation: Foundations and Frontiers
(Cambridge University Press, Cambridge, UK,
2010
).
12.
M. J.
Hall
, “
Simple precession calculation for Mercury: A linearization approach
,”
Am. J. Phys.
90
(
11
),
857
860
(
2022
).
13.
R.
Abuter
,
A.
Amorim
,
M.
Bauböck
,
J. P.
Berger
,
H.
Bonnet
,
W.
Brandner
,
V.
Cardoso
,
Y.
Clénet
,
P. T.
de Zeeuw
,
J.
Dexter
,
A.
Eckart
,
F.
Eisenhauer
,
N. M.
Förster Schreiber
,
P.
Garcia
,
F.
Gao
,
E.
Gendron
,
R.
Genzel
,
S.
Gillessen
,
M.
Habibi
,
X.
Haubois
,
T.
Henning
,
S.
Hippler
,
M.
Horrobin
,
A.
Jiménez-Rosales
,
L.
Jochum
,
L.
Jocou
,
A.
Kaufer
,
P.
Kervella
,
S.
Lacour
,
V.
Lapeyrère
,
J.-B.
Le Bouquin
,
P.
Léna
,
M.
Nowak
,
T.
Ott
,
T.
Paumard
,
K.
Perraut
,
G.
Perrin
,
O.
Pfuhl
,
G.
Rodríguez-Coira
,
J.
Shangguan
,
S.
Scheithauer
,
J.
Stadler
,
O.
Straub
,
C.
Straubmeier
,
E.
Sturm
,
L. J.
Tacconi
,
F.
Vincent
,
S.
von Fellenberg
,
I.
Waisberg
,
F.
Widmann
,
E.
Wieprecht
,
E.
Wiezorrek
,
J.
Woillez
,
S.
Yazici
,
G.
Zins
, and
GRAVITY collaboration
, “
Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole
,”
Astron. Astrophys.
636
,
L5
(
2020
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.