In electromagnetism courses, students often solve Poisson's equation for a point charge in the presence of an infinitely large perfectly conducting planar surface, usually by the method of images. However, no surface is perfectly flat; so at some level, corrugations must be introduced to model the real world. Clinton et al. [Phys. Rev. B 31, 7540 (1985)] solved the problem, including corrugations, using a perturbative calculation of the corresponding Green's function. We provide a detailed pedagogical review of this calculation and extend it in order to solve for the electrostatic potential of a corrugated neutral conducting cylinder in the presence of a uniform electric field. These calculations can be used as pedagogical examples of this perturbative approach in electromagnetism courses.

1.
W. L.
Clinton
,
M.
Esrick
,
H.
Ruf
, and
W.
Sacks
, “
Image potential for stepped and corrugated surfaces
,”
Phys. Rev. B
31
,
722–726
(
1985
).
2.
T. S.
Rahman
and
A. A.
Maradudin
, “
Effect of surface roughness on the image potential
,”
Phys. Rev. B
21
,
504–521
(
1980
).
3.
M. W.
Cole
, “
Electronic surface states of liquid helium
,”
Rev. Mod. Phys.
46
,
451–464
(
1974
).
4.
J.
Lei
,
H.
Sun
,
K. W.
Yu
,
S. G.
Louie
, and
M. L.
Cohen
, “
Image potential states on periodically corrugated metal surfaces
,”
Phys. Rev. B
63
,
045408
(
2001
).
5.
P.
Amore
and
F. M.
Fernández
, “
On the straightforward perturbation theory in classical mechanics
,”
Eur. J. Phys.
39
,
055001
(
2018
).
6.
B. C.
Carlson
and
G. L.
Morley
, “
Multipole expansion of coulomb energy
,”
Am. J. Phys.
31
,
209–211
(
1963
).
7.
J. L.
Marin
and
R.
Rosas
, “
Electrostatic images by multipole expansion
,”
Am. J. Phys.
52
,
358–361
(
1984
).
8.
W. L.
Clinton
,
M. A.
Esrick
, and
W. S.
Sacks
, “
Image potential for nonplanar metal surfaces
,”
Phys. Rev. B
31
,
7540
7549
(
1985
).
9.
D. T.
Alves
and
N. M. R.
Peres
, “
Two-dimensional materials in the presence of nonplanar interfaces
,”
Phys. Rev. B
99
,
075437
(
2019
).
10.
E. C. M.
Nogueira
,
L.
Queiroz
, and
D. T.
Alves
, “
Peak, valley, and intermediate regimes in the lateral van der Waals force
,”
Phys. Rev. A
104
,
012816
(
2021
).
11.
L.
Queiroz
,
E. C. M.
Nogueira
, and
D. T.
Alves
, “
Regimes of the lateral van der Waals force in the presence of dielectrics
,”
Phys. Rev. A
104
,
062802
(
2021
).
12.
E. C. M.
Nogueira
,
L.
Queiroz
, and
D. T.
Alves
, “
Sign inversion in the lateral van der Waals force
,”
Phys. Rev. A
105
,
062816
(
2022
).
13.
A.
Liemert
, “
A simple analytical solution of Poisson's equation on a region bounded by hyperbolae
,”
Eur. J. Phys.
35
,
035021
(
2014
).
14.
J. J. G.
Scanio
, “
Green's function and images in an electrostatics problem
,”
Am. J. Phys.
41
,
415–418
(
1973
).
15.
M.
Uehara
, “
Green's functions and coefficients of capacitance
,”
Am. J. Phys.
54
,
184–185
(
1986
).
16.
See supplementary material online for more detailed calculations and discussions.
17.
G. B.
Arfken
and
H. J.
Weber
,
Mathematical Methods for Physicists
, 6th ed. (
Elsevier Science
,
Amsterdam
,
2005
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.