We have experimentally demonstrated dissipative coupling in a double pendulum system through observation, which shows three distinctly different patterns of motion over the accessible parameter space. The described dissipative coupling apparatus is easy to manufacture and budget-friendly. The theoretical calculations are also suitable for the undergraduate level. Our experiment can serve as a novel demonstration for ubiquitous dynamic coupling effects encountered in many disparate physical systems. Unlike the well-known spring-coupled pendulums, our experiment employs Lenz's effect to couple the pendulums through electromagnetic damping, which, to the best of our knowledge, has not been demonstrated in the classroom. Our pendulums exhibit level attraction behaviour between two modes, induced by the dissipative coupling. This stands in contrast to the traditionally taught concept of level repulsion (avoided crossing) with spring-coupled pendulums. This experiment showcases distinctly different time domain dynamics of the dissipatively coupled pendulums over the parameter space, characterized by different oscillation patterns, damping rates, and relative phase between the two pendulums, which is a valuable lesson elucidating the dynamics of synchronization in linear systems for undergraduate students.

1.
J.
Taylor
,
Classical Mechanics
(
University Science Books
,
Sausalito, CA
,
2002
).
2.
A. B.
Lockhart
,
A.
Skinner
,
W.
Newman
,
D. B.
Steinwachs
, and
S. A.
Hilbert
, “
An experimental demonstration of avoided crossings with masses on springs
,”
Am. J. Phys.
86
(
7
),
526
530
(
2018
).
3.
E.
Verhagen
,
S.
Deléglise
,
S.
Weis
,
A.
Schliesser
, and
T. J.
Kippenberg
, “
Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode
,”
Nature
482
(
7383
),
63
67
(
2012
).
4.
Y.
Tabuchi
,
S.
Ishino
,
A.
Noguchi
,
T.
Ishikawa
,
R.
Yamazaki
,
K.
Usami
, and
Y.
Nakamura
, “
Coherent coupling between a ferromagnetic magnon and a superconducting qubit
,”
Science
349
(
6246
),
405
408
(
2015
).
5.
W.
Newman
,
A.
Skinner
, and
S. A.
Hilbert
, “
An acoustic demonstration of an avoided crossing
,”
Am. J. Phys.
85
(
11
),
844
849
(
2017
).
6.
M.
Harder
,
B.
Yao
,
Y.
Gui
, and
C.-M.
Hu
, “
Coherent and dissipative cavity magnonics
,”
J. Appl. Phys.
129
(
20
),
201101
(
2021
).
7.
M.
Harder
,
Y.
Yang
,
B.
Yao
,
C.
Yu
,
J.
Rao
,
Y.
Gui
,
R.
Stamps
, and
C.-M.
Hu
, “
Level attraction due to dissipative magnon-photon coupling
,”
Phys. Rev. Lett.
121
(
13
),
137203
(
2018
).
8.
Y.
Choi
,
C.
Hahn
,
J. W.
Yoon
, and
S. H.
Song
, “
Observation of an anti-pt-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators
,”
Nat. Commun.
9
(
1
),
1
6
(
2018
).
9.
Y.-P.
Wang
and
C.-M.
Hu
, “
Dissipative couplings in cavity magnonics
,”
J. Appl. Phys.
127
(
13
),
130901
(
2020
).
10.
J.
Ding
and
M.-A.
Miri
, “
Mode discrimination in dissipatively coupled laser arrays
,”
Opt. Lett.
44
(
20
),
5021
5024
(
2019
).
11.
W.
Yu
,
J.
Wang
,
H.
Yuan
,
J.
Xiao
et al, “
Prediction of attractive level crossing via a dissipative mode
,”
Phys. Rev. Lett.
123
(
22
),
227201
(
2019
).
12.
M.
Cross
,
A.
Zumdieck
,
R.
Lifshitz
, and
J.
Rogers
, “
Synchronization by nonlinear frequency pulling
,”
Phys. Rev. Lett.
93
(
22
),
224101
(
2004
).
13.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
(
CRC Press
,
Boca Raton, FL
,
2018
).
14.
A.
Pikovsky
,
M.
Rosenblum
,
J.
Kurths
et al,
A Universal Concept in Nonlinear Sciences
(
Cambridge U. P.
,
Cambridge
,
2001
).
15.
M.
Gutierrez Soto
and
H.
Adeli
, “
Tuned mass dampers
,”
Arch. Comput. Methods Eng.
20
(
4
),
419
431
(
2013
).
16.
P. M.
Mathews
,
T. A.
Herring
, and
B. A.
Buffett
, “
Modeling of nutation and precession: New nutation series for nonrigid earth and insights into the earth's interior
,”
J. Geophysical Res.: Solid Earth
107
(
B4
),
ETG 3-1
ETG 3-26
(
2002
).
17.
Y.
Tabuchi
,
S.
Ishino
,
T.
Ishikawa
,
R.
Yamazaki
,
K.
Usami
, and
Y.
Nakamura
, “
Hybridizing ferromagnetic magnons and microwave photons in the quantum limit
,”
Phys. Rev. Lett.
113
(
8
),
083603
(
2014
).
18.
C. E.
Gough
, “
A violin shell model: Vibrational modes and acoustics
,”
J. Acoust. Soc. Am.
137
(
3
),
1210
1225
(
2015
).
19.
K.
Vijayan
and
J.
Woodhouse
, “
Shock amplification, curve veering and the role of damping
,”
J. Sound Vibration
333
(
5
),
1379
1389
(
2014
).
20.
C.
Chicone
,
Ordinary Differential Equations with Applications
, Texts in Applied Mathematics (
Springer
,
New York
,
2008
), Chap. 7.
21.
N.
Bogoliubov
,
Asymptotic Methods in the Theory of Non-Linear Oscillations
(
Hindustan
,
New Delhi
,
1961
), pp.
387
412
.
22.
N.
Minorsky
and
T.
Teichmann
, “
Nonlinear oscillations
,”
Phys. Today
15
(
9
),
63
65
(
1962
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.