Geometric optics is often described as tracing the paths of non-diffracting rays through an optical system. In the paraxial limit, ray traces can be calculated using ray transfer matrices (colloquially, ABCD matrices), which are 2 × 2 matrices acting on the height and slope of the rays. A known limitation of ray transfer matrices is that they only work for optical elements that are centered and normal to the optical axis. In this article, we provide an improved 3 × 3 matrix method for calculating paraxial ray traces of optical systems that is applicable to how these systems are actually arranged on the optical table: lenses and mirrors in any orientation or position (e.g., in laboratory coordinates), with the optical path zig-zagging along the table. Using projective duality, we also show how to directly image points through an optical system using a point transfer matrix calculated from the system's ray transfer matrix. We demonstrate the usefulness of these methods with several examples and discuss future directions to expand the applications of this technique.

1.
Klaus
Halbach
, “
Matrix representation of Gaussian optics
,”
Am. J. Phys.
32
,
90
108
(
1964
).
2.
A.
Gerrard
and
J. M.
Burch
,
Introduction to Matrix Methods in Optics
(
Dover
,
New York
,
1994
).
3.
Frank L.
Pedrotti
,
Leno M.
Pedrotti
, and
Leno S.
Pedrotti
,
Introduction to Optics
,
3rd ed
. (
Pearson
,
Harlow
,
2007
), Chap. 18.
4.
Eugene
Hecht
,
Optics
,
5th ed
. (
Pearson
,
2017
), Chap. 6.
5.
Max
Born
and
Emil
Wolf
,
Principles of Optics
,
7th ed
. (
Cambridge
,
New York
,
1999
), Chap. 4.
6.
Matt
Pharr
,
Jakob
Wenzel
, and
Greg
Humphreys
,
Physically Based Rendering: From Theory to Implementation
,
3rd ed
. (
Morgan Kaufmann
,
Cambridge, MA
,
2016
).
7.
Jorge
Stolfi
,
Oriented Projective Geometry: A Framework for Geometric Computations
(
Academic Press
,
2014
).
8.
H. S. M.
Coxeter
,
Projective Geometry
,
2nd ed
. (
Springer
,
New York
,
2003
).
9.
Enzo
Cambi
, “
Projective formulation of the problems of geometrical optics. I. Theoretical foundations
,”
J. Opt. Soc. Am.
49
,
2
15
(
1959
).
10.
Donald P.
Feder
, “
Automatic optical design
,”
Appl. Opt.
2
,
1209
1226
(
1963
).
11.
C. G.
Wynne
and
P. M. J. H.
Wormell
, “
Lens design by computer
,”
Appl. Opt.
2
,
1233
1238
(
1963
).
12.
J. A.
Arnaud
,
Beam and Fiber Optics
(
Academic
,
New York
,
1976
).
13.
Wang
Shaomin
, “
Matrix methods in treating decentred optical systems
,”
Opt. Quantum Electron.
17
,
1
14
(
1985
).
14.
A. E.
Siegman
,
Lasers
(
University Science Books
,
1986
).
15.
Anthony A.
Tovar
and
Lee W.
Casperson
, “
Generalized beam matrices: Gaussian beam propagation in misaligned complex optical systems
,”
J. Opt. Soc. Am. A
12
,
1522
1533
(
1995
).
16.
Psang Dain
Lin
and
Chi-Kuen
Sung
, “
Matrix-based paraxial skew ray-tracing in 3D systems with non-coplanar optical axis
,”
Optik
117
,
329
340
(
2006
).
17.
P. D.
Lin
and
C.-C.
Hsueh
, “
6 × 6 matrix formalism of optical elements for modeling and analyzing 3D optical systems
,”
Appl. Phys. B
97
,
135
143
(
2009
).
18.
Psang Dain
Lin
,
New Computation Methods for Geometrical Optics
, Vol.
178
(
Springer
,
Singapore
,
2014
).
19.
Xiyuan
Liu
and
Karl-Heinz
Brenner
, “
Minimal optical decomposition of ray transfer matrices
,”
Appl. Opt.
47
,
E88
E98
(
2008
).
20.
Anthony A.
Tovar
and
Lee W.
Casperson
, “
Generalized beam matrices. IV. Optical system design
,”
J. Opt. Soc. Am. A
14
,
882
894
(
1997
).
21.
See supplementary material at https://www.scitation.org/doi/suppl/10.1119/5.0083069 for a more rigorous proof of Eq. (7) and an additional application of that proof. The supplement also contains example python code showing how to apply our method to solve the examples given in the main text.
22.
Equivalently, one may use the two-argument form of the arctangent: ϕ = arctan 2 ( a , b ).
23.
Leo
Dorst
, “
A guided tour to the plane-based geometric algebra PGA
” (
2020
), intended as replacement for Chap. 11 of Ref. 26.
24.
Chris
Doran
and
A. N.
Lasenby
,
Geometric Algebra for Physicists
(
Cambridge U. P
.,
Cambridge
,
2007
).
25.
Sergei
Winitzki
,
Linear Algebra via Exterior Products
(
Lulu
,
2020
), Version 1.3.
26.
Leo
Dorst
,
Daniel
Fontijne
, and
Stephen
Mann
,
Geometric Algebra for Computer Science
(
Morgan Kaufmann
,
Amsterdam
,
2007
).
27.
Gilbert
Strang
,
Linear Algebra and Its Applications
,
4th ed
. (
Cengage Learning
,
Belmont, CA
,
2006
).
28.
Kurt Bernardo
Wolf
,
Geometric Optics on Phase Space
(
Springer-Verlag
,
Berlin
,
2004
).
29.
Julius
Plüker
, “
On a new geometry of space
,”
Proc. R. Soc. London
14
,
53
58
(
1865
).
30.
David
Hestenes
, “
Oersted Medal Lecture 2002: Reforming the mathematical language of physics
,”
Am. J. Phys.
71
,
104
121
(
2003
).
31.
Alan
Macdonald
,
Linear and Geometric Algebra
(
CreateSpace Independent Publishing Platform
,
2011
).
32.
C.
Doran
,
D.
Hestenes
,
F.
Sommen
, and
N.
Van Acker
, “
Lie groups as spin groups
,”
J. Math. Phys.
34
,
3642
3669
(
1993
).
33.
Leo
Dorst
, “
3d oriented projective geometry through versors of R ( 3 , 3 )
,”
Adv. Appl. Clifford Algebras
26
,
1137
1172
(
2016
).
34.
Quirino M.
Sugon
and
Daniel J.
McNamara
, “
A geometric algebra reformulation of geometric optics
,”
Am. J. Phys.
72
,
92
97
(
2003
).
35.
Quirino M.
Sugon
and
Daniel J.
McNamara
, “
Ray tracing in spherical interfaces using geometric algebra
,”
Adv. Imaging Electron Phys.
139
,
179
224
(
2006
).
36.
Quirino M.
Sugon
and
Daniel J.
McNamara
, “
Paraxial meridional ray tracing equations from the unified reflection-refraction law via geometric algebra
,” arXiv:0810.5224 (
2008
).
37.
Quirino M.
Sugon
, Jr.
and
Daniel J.
McNamara
, “
Poisson commutator-anticommutator brackets for ray tracing and longitudinal imaging via geometric algebra
,” arXiv:0812.2979 (
2008
).
38.
H.
Pottman
and
J.
Wallner
,
Computational Line Geometry
(
Springer
,
New York
,
2001
).
39.
Jacques
Arnaud
, “
Representation of Gaussian beams by complex rays
,”
Appl. Opt.
24
,
538
543
(
1985
).
40.
Paul D.
Colbourne
, “
Generally astigmatic Gaussian beam representation and optimization using skew rays
,” in
SPIE Proceedings
, Vol.
9293
, edited by
Mariana
Figueiro
,
Scott
Lerner
,
Julius
Muschaweck
, and
John
Rogers
(
Kohala Coast
,
Hawaii, United States
,
2014
) p.
92931S
.
41.
Stuart A.
Collins
, “
Lens-system diffraction integral written in terms of matrix optics
,”
J. Opt. Soc. Am.
60
,
1168
1177
(
1970
).
42.
Miguel A.
Bandres
and
Manuel
Guizar-Sicairos
, “
Paraxial group
,”
Opt. Lett.
34
,
13
15
(
2009
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.