We demonstrate a simple and cost-efficient scanning confocal microscope setup for use in advanced instructional physics laboratories. The setup is constructed from readily available commercial products, and the implementation of a 3D-printed flexure stage allows for further cost reduction and pedagogical opportunity. Experiments exploring the thickness of a microscope slide and the surface of solid objects with height variation are presented as foundational components of undergraduate laboratory projects and demonstrate the capabilities of a confocal microscope. This system allows observation of key components of a confocal microscope, including depth perception and data acquisition via transverse scanning, making it an excellent pedagogical resource.

1.
C. J. R.
Sheppard
and
D. M.
Schotton
,
Confocal Laser Scanning Microscopy
(
Springer-Verlag
,
Singapore
,
1997
).
2.
A. D.
Elliot
, “
Confocal microscopy: Principles and modern practices
,”
Curr. Protoc. Cytom.
92
,
e68
(
2020
).
3.
J. C.
Erie
,
J. W.
McLaren
, and
S. V.
Patel
, “
Confocal microscopy in ophthalmology
,”
Am. J. Ophthalmol.
148
,
639–646
(
2009
).
4.
P.
Xi
,
B.
Rajwa
,
J. T.
Jones
, and
J. P.
Robinson
, “
The design and construction of a cost-efficient confocal laser scanning microscope
,”
Am. J. Phys.
75
,
203–207
(
2007
).
5.
J.
Hsu
,
S.
Dhingra
, and
B.
D'Urso
, “
Design and construction of a cost-efficient Arduino-based mirror galvanometer system for scanning optical microscopy
,”
Am. J. Phys.
85
,
68
75
(
2017
).
6.
S.
Arunkarthick
,
M. M.
Bijeesh
,
A. S.
Vetcha
,
N.
Rastogi
,
P.
Nandakumar
, and
G. K.
Varier
, “
Design and construction of a confocal laser scanning microscope for biomolecular imaging
,”
Curr. Sci.
107
,
1965–1969
(
2014
), available at http://www.jstor.org/stable/24216028.
7.
C. M.
Jennings
,
J. B.
King
, and
S. H.
Parekh
, “
Low-cost, minimalist line-scanning confocal microscopy
,”
Opt. Lett.
47
,
4191
–4194 (
2022
).
8.
P. K.
Shakhi
,
M. M.
Bijeesh
,
G. K.
Varier
, and
P.
Nandakumar
, “
An in-house constructed dual channel confocal fluorescence microscope for biomolecular imaging
,”
OSA Continuum
4
,
2177–2192
(
2021
).
9.
C.
Gong
,
N.
Kulkarni
,
W.
Zhu
,
C. D.
Nguyen
,
C.
Curiel-Lewandrowski
, and
D.
Kang
, “
Low-cost, high-speed near infrared reflectance confocal microscope
,”
Bio. Opt. Express
10
,
3497–3505
(
2019
).
10.
J. P.
Sharkey
,
C. C. W.
Foo
,
A.
Kabla
,
J. J.
Baumberg
, and
R. W.
Bowman
, “
A one-piece printed flexure stage for open-source microscopy
,”
Rev. Sci. Inst.
87
,
025104
(
2016
).
11.
Q.
Meng
,
K.
Harrington
,
J.
Stirling
, and
R.
Bowman
, “
The OpenFlexure Block Stage: Sub-100 nm fibre alignment with a monolithic plastic flexure stage
,”
Opt. Express
28
,
4763–4772
(
2020
).
12.
M.
Mantia
and
T.
Bixby
, “
Optical measurements on a budget: A 3D printed ellipsometer
,”
Am. J. Phys.
90
,
445–451
(
2022
).
13.
E.
Brekke
,
T.
Bennett
,
H.
Rook
, and
E. L.
Hazlett
, “
3D printing an external-cavity diode laser housing
,”
Am. J. Phys.
88
,
1170–1174
(
2020
).
14.
B.
Schmidt
,
M.
Pacholok
,
D.
King
, and
J.
Kariuki
, “
Application of 3D printers to fabricate low-cost electrode components for undergraduate experiments and research
,”
J. Chem. Educ.
99
,
1160–1166
(
2022
).
15.
T.
Matsui
and
D.
Fujiwara
, “
Optical sectioning robotic microscopy for everyone: The structured illumination microscope with the OpenFlexure stages
,”
Opt. Express
30
,
23208
(
2022
).
16.
J. T.
Collins
,
J.
Knapper
,
J.
Sterling
,
J.
Mduda
,
C.
Mkindi
,
V.
Mayagaya
,
G. A.
Mwakajinga
,
P. T.
Nyakyi
,
V. L.
Sanga
,
D.
Carbery
,
L.
White
,
S.
Dale
,
Z. J.
Lim
,
J. J.
Baumberg
,
P.
Cicuta
,
S.
McDermott
,
B.
Vodenicharski
, and
R.
Bowman
, “
Robotic microscopy for everyone: The OpenFlexure microscope
,”
Bio. Opt. Express
11
,
2447–2460
(
2020
).
17.
B.
Diedrich
,
R.
Lachmann
,
B.
Marsikova
,
H.
Wang
,
X.
Uwurukundo
,
A. S.
Mosig
, and
R.
Heintzmann
, “
A versatile and customizable low-cost 3D-printed open standard for microscopic imaging
,”
Nat. Comm.
11
,
5979
(
2020
).
18.
M.
Del Rosario
,
H. S.
Heil
,
A.
Mendes
,
V.
Saggiomo
, and
R.
Henriques
, “
The field guide to 3D printing in optical microscopy for life sciences
,”
Adv. Biol.
6
,
2100994
(
2022
).
19.
A. M.
Chagas
,
L. L.
Prieto-Godino
,
A. B.
Arrenberg
, and
T.
Baden
, “
The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optgenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabdtis elegans
,”
PLOS Biol.
15
,
e2002702
(
2017
).
20.
J. W. P.
Brown
,
A.
Bauer
,
M. E.
Polinkovsky
,
A.
Bhumkar
,
D. J. B.
Hunter
,
K.
Gaus
,
E.
Sierecki
, and
Y.
Gambin
, “
Single-molecule detection on a portable 3D-printed microscope
,”
Nat. Comm.
10
,
5662
(
2019
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.