A few years ago, one of the former Editors of this journal launched “a call to action” (E. F. Taylor, Am. J. Phys. 71, 423–425 (2003)) for a revision of teaching methods in physics in order to emphasize the importance of the principle of least action. In response, we suggest the use of Hamilton's principle of stationary action to introduce the Schrödinger equation. When considering the geometric interpretation of the Hamilton–Jacobi theory, the real part of the action S defines the phase of the wave function exp i S / , and requiring the Hamilton–Jacobi wave function to obey wave-front propagation (i.e., Re ( S ) is a constant of the motion) yields the Schrödinger equation.

1.
D. F.
Styer
et al, “
Nine formulations of quantum mechanics
,”
Am. J. Phys.
70
,
288
297
(
2002
).
2.
W. P.
Schleich
,
D. M.
Greenberger
,
D. H.
Kobe
, and
M. O.
Scully
, “
Schrödinger equation revisited
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
5374
5379
(
2013
).
3.
E.
Schrödinger
, “
Quantisierung als eigenwertproblem (erste mitteilung)
,”
Ann. Phys.
384
,
361
376
(
1926
);
E.
Schrödinger
Quantisierung als eigenwertproblem (zweite Mitteilung)
,”
Ann. Phys.
384
,
489–527
(
1926
).
Reprinted and translated in
E.
Schrödinger
,
Collected Papers on Wave Mechanics
(
Chelsea Publishing Company
,
New York
,
1982
).
4.
R. P.
Feynman
,
R. B.
Leighton
, and
M.
Sands
,
The Feynman Lectures on Physics
(
Addison-Wesley
,
1977
), Vol.
3
, Chap. 16, p. 4.
5.
R. P.
Feynman
, “
Space-time approach to non-relativistic quantum mechanics
,”
Rev. Mod. Phys.
20
,
367
387
(
1948
).
6.
D.
Derbes
, “
Feynman's derivation of the Schrödinger equation
,”
Am. J. Phys.
64
,
881
884
(
1996
).
7.
E.
Nelson
, “
Derivation of the Schrödinger equation from Newtonian mechanics
,”
Phys. Rev.
150
,
1079
1085
(
1966
).
8.
E.
Santamato
, “
Geometric derivation of the Schrödinger equation from classical mechanics in curved Weyl spaces
,”
Phys. Rev. D
29
,
216
222
(
1984
).
9.
B. Roy
Frieden
, “
Fisher information as the basis for the Schrödinger wave equation
,”
Am. J. Phys.
57
,
1004
1008
(
1989
).
10.
C. G.
Gray
,
G.
Karl
, and
V. A.
Novikov
, “
From Maupertius to Schrödinger. Quantization of classical variational principles
,”
Am. J. Phys.
67
,
959
961
(
1999
).
11.
W. E.
Lamb
, “
Superclassical quantum mechanics: The best interpretation of nonrelativistic quantum mechanics
,”
Am. J. Phys.
69
,
413
422
(
2001
).
12.
M. J. W.
Hall
and
M.
Reginatto
, “
Schrödinger equation from an exact uncertainty principle
,”
J. Phys. A: Math. Gen.
35
,
3289
3303
(
2002
).
13.
L.
Fritsche
and
M.
Haugk
, “
A new look at the derivation of the Schrödinger equation from Newtonian mechanics
,”
Ann. Phys.
12
,
371
402
(
2003
).
14.
G.
Grössing
, “
From classical Hamiltonian flow to quantum theory: Derivation of the Schrödinger equation
,”
Found. Phys. Lett.
17
,
343
362
(
2004
).
15.
J. S.
Briggs
,
S.
Boonchui
, and
S.
Khemmani
, “
The derivation of time-dependent Schrödinger equations
,”
J. Phys. A: Math. Theor.
40
,
1289
1302
(
2007
).
16.
G.
Grössing
, “
The vacuum fluctuation theorem: Exact Schrödinger equation via nonequilibrium thermodynamics
,”
Phys. Lett. A
372
,
4556
4563
(
2008
).
17.
N.
Cufaro Petroni
and
M.
Pusterla
, “
Lévy processes and Schrödinger equations
,”
Physics A
388
,
824
836
(
2009
).
18.
P. R.
Sarma
, “
Direct derivation of Schrödinger equation from Hamilton–Jacobi equation using uncertainty principle
,”
Rom. J. Phys.
56
,
1053
1056
(
2011
), available at rjp.nipne.ro.
19.
A.
Deriglazov
and
B. F.
Rizzuti
, “
Reparametrization-invariant formulation of classical mechanics and the Schrödinger equation
,”
Am. J. Phys.
79
,
882
885
(
2011
).
20.
J. H.
Field
, “
Derivation of the Schrödinger equation from the Hamilton–Jacobi equation in Feynman's path integral formulation of quantum mechanics
,”
Eur. J. Phys.
32
,
63
87
(
2011
).
21.
M. A.
de Gosson
and
B. J.
Hiley
, “
Imprints of the quantum world in classical mechanics
,”
Found. Phys.
41
,
1415
1436
(
2011
).
22.
A.
Caticha
, “
Entropic dynamics, time and quantum theory
,”
J. Phys. A: Math. Theor.
44
,
225303
(
2011
).
23.
G.
González
, “
Relation between Poisson and Schrödinger equations
,”
Am. J. Phys.
82
,
715
719
(
2012
).
24.
H.
Goldstein
,
C.
Poole
, and
J.
Safko
,
Classical Mechanics
(
Addison-Wesley
,
Reading, MA
,
2001
).
25.
E. F.
Taylor
, “
A call to action
,”
Am. J. Phys.
71
,
423–425
(
2003
).
26.
C.
Cohen-Tannoudji
,
B.
Diu
, and
F.
Laloe
,
Quantum Mechanics
(
Wiley
,
New York
,
1991
), Vol. 1, pp.
20
and 222.
27.
D. J.
Griffiths
,
Introduction to Quantum Mechanics
(
Pearson Prentice Hall
,
Hoboken, NJ
,
2005
), p.
1
.
28.
R.
Shankar
,
Principles of Quantum Mechanics
(
Springer
,
New York
,
2014
), p.
116
.
29.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics: Non-Relativistic Theory
(
Pergamon
,
New York
,
1977
), pp.
50
51
.
30.
R. M.
Eisberg
and
R.
Resnick
,
Quantum Physics of Atoms Molecules, Solids, Nuclei, and Particles
(
John Wiley & Sons
,
New York
,
1985
), pp.
128
132
.
31.
A.
Messiah
,
Quantum Mechanics
(
Dover Publications
,
New York
,
1999
), pp.
63
67
.
32.
B. H.
Bransden
and
C. J.
Joachim
,
Quantum Mechanics
(
Pearson
,
New York
,
2007
), pp.
82
85
.
33.
J. J.
Sakurai
and
J.
Napolitano
,
Modern Quantum Mechanics
(
Cambridge U. P
.,
Cambridge
,
2021
), p.
65
.
34.
P. A. M.
Dirac
,
The Principles of Quantum Mechanics
(
Oxford U. P
.,
Oxford
,
1958
).
35.
R.
Talman
,
Geometric Mechanics
(
Wiley
,
New York
,
2007
), pp.
297
299
.
36.
R.
Karam
, “
Why are complex numbers needed in quantum mechanics? Some answers for the introductory level
,”
Am. J. Phys.
88
,
39
45
(
2020
).
37.
R. C. W.
Misner
,
K. S.
Thorne
, and
J. A.
Wheeler
,
Gravitation
(
Princeton U. P
.,
Princeton
,
2017
), p.
491
.
38.
R. S. M.
Carroll
,
Spacetime and Geometry
(
Cambridge U. P
.,
Cambridge
,
2019
), p.
159
.
39.
S.
Weinberg
,
The Quantum Theory of Fields
(
Cambridge U. P
.,
Cambridge
,
1995
), pp.
20
21
and 299.
40.
C.
Itzykson
and
J.-B.
Zuber
,
Quantum Field Theory
(
McGraw-Hill
,
New York
,
1980
), Chap. 1.
41.
R.
Karam
, “
Schrödinger's original struggles with a complex wave function
,”
Am. J. Phys.
88
,
433
438
(
2020
).
42.
R. A.
Leacock
and
M. J.
Padgett
, “
Hamilton-Jacobi theory and the quantum action variable
,”
Phys. Rev. Lett.
50
,
3
6
(
1983
).
43.
R. A.
Leacock
and
M. J.
Padgett
, “
Hamilton-Jacobi/action-angle quantum mechanics
,”
Phys. Rev. D
28
,
2491
2502
(
1983
).
44.
R.
Schiller
, “
Quasi-classical theory of the non-spinning electron
,”
Phys. Rev.
125
,
1100
1108
(
1962
).
45.
L.
Motz
, “
Quantization and the classical Hamilton–Jacobi equation
,”
Phys. Rev.
126
,
378
382
(
1962
).
46.
G. B.
Arfken
,
H. J.
Weber
, and
F. E.
Harris
,
Mathematical Methods for Physicists
(
Elsevier
,
New York
,
2020
), p.
871
.
47.
H. S.
Green
,
Matrix Mechanics
(
P. Noordhoff Ltd
.,
Groningen
,
1965
), p.
60
.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.