A few years ago, one of the former Editors of this journal launched “a call to action” (E. F. Taylor, Am. J. Phys. 71, 423–425 (2003)) for a revision of teaching methods in physics in order to emphasize the importance of the principle of least action. In response, we suggest the use of Hamilton's principle of stationary action to introduce the Schrödinger equation. When considering the geometric interpretation of the Hamilton–Jacobi theory, the real part of the action defines the phase of the wave function , and requiring the Hamilton–Jacobi wave function to obey wave-front propagation (i.e., is a constant of the motion) yields the Schrödinger equation.
REFERENCES
1.
D. F.
Styer
et al, “
Nine formulations of quantum mechanics
,” Am. J. Phys.
70
, 288
–297
(2002
).2.
W. P.
Schleich
,
D. M.
Greenberger
,
D. H.
Kobe
, and
M. O.
Scully
, “
Schrödinger equation revisited
,” Proc. Natl. Acad. Sci. U. S. A.
110
, 5374
–5379
(2013
).3.
E.
Schrödinger
, “
Quantisierung als eigenwertproblem (erste mitteilung)
,” Ann. Phys.
384
, 361
–376
(1926
);E.
Schrödinger
“
Quantisierung als eigenwertproblem (zweite Mitteilung)
,” Ann. Phys.
384
, 489–527
(1926
).Reprinted and translated in
E.
Schrödinger
, Collected Papers on Wave Mechanics
(
Chelsea Publishing Company
,
New York
, 1982
).4.
R. P.
Feynman
,
R. B.
Leighton
, and
M.
Sands
, The Feynman Lectures on Physics
(
Addison-Wesley
, 1977
), Vol.
3
, Chap. 16, p. 4.5.
R. P.
Feynman
, “
Space-time approach to non-relativistic quantum mechanics
,” Rev. Mod. Phys.
20
, 367
–387
(1948
).6.
D.
Derbes
, “
Feynman's derivation of the Schrödinger equation
,” Am. J. Phys.
64
, 881
–884
(1996
).7.
E.
Nelson
, “
Derivation of the Schrödinger equation from Newtonian mechanics
,” Phys. Rev.
150
, 1079
–1085
(1966
).8.
E.
Santamato
, “
Geometric derivation of the Schrödinger equation from classical mechanics in curved Weyl spaces
,” Phys. Rev. D
29
, 216
–222
(1984
).9.
B. Roy
Frieden
, “
Fisher information as the basis for the Schrödinger wave equation
,” Am. J. Phys.
57
, 1004
–1008
(1989
).10.
C. G.
Gray
,
G.
Karl
, and
V. A.
Novikov
, “
From Maupertius to Schrödinger. Quantization of classical variational principles
,” Am. J. Phys.
67
, 959
–961
(1999
).11.
W. E.
Lamb
, “
Superclassical quantum mechanics: The best interpretation of nonrelativistic quantum mechanics
,” Am. J. Phys.
69
, 413
–422
(2001
).12.
M. J. W.
Hall
and
M.
Reginatto
, “
Schrödinger equation from an exact uncertainty principle
,” J. Phys. A: Math. Gen.
35
, 3289
–3303
(2002
).13.
L.
Fritsche
and
M.
Haugk
, “
A new look at the derivation of the Schrödinger equation from Newtonian mechanics
,” Ann. Phys.
12
, 371
–402
(2003
).14.
G.
Grössing
, “
From classical Hamiltonian flow to quantum theory: Derivation of the Schrödinger equation
,” Found. Phys. Lett.
17
, 343
–362
(2004
).15.
J. S.
Briggs
,
S.
Boonchui
, and
S.
Khemmani
, “
The derivation of time-dependent Schrödinger equations
,” J. Phys. A: Math. Theor.
40
, 1289
–1302
(2007
).16.
G.
Grössing
, “
The vacuum fluctuation theorem: Exact Schrödinger equation via nonequilibrium thermodynamics
,” Phys. Lett. A
372
, 4556
–4563
(2008
).17.
N.
Cufaro Petroni
and
M.
Pusterla
, “
Lévy processes and Schrödinger equations
,” Physics A
388
, 824
–836
(2009
).18.
P. R.
Sarma
, “
Direct derivation of Schrödinger equation from Hamilton–Jacobi equation using uncertainty principle
,” Rom. J. Phys.
56
, 1053
–1056
(2011
), available at rjp.nipne.ro.19.
A.
Deriglazov
and
B. F.
Rizzuti
, “
Reparametrization-invariant formulation of classical mechanics and the Schrödinger equation
,” Am. J. Phys.
79
, 882
–885
(2011
).20.
J. H.
Field
, “
Derivation of the Schrödinger equation from the Hamilton–Jacobi equation in Feynman's path integral formulation of quantum mechanics
,” Eur. J. Phys.
32
, 63
–87
(2011
).21.
M. A.
de Gosson
and
B. J.
Hiley
, “
Imprints of the quantum world in classical mechanics
,” Found. Phys.
41
, 1415
–1436
(2011
).22.
A.
Caticha
, “
Entropic dynamics, time and quantum theory
,” J. Phys. A: Math. Theor.
44
, 225303
(2011
).23.
G.
González
, “
Relation between Poisson and Schrödinger equations
,” Am. J. Phys.
82
, 715
–719
(2012
).24.
H.
Goldstein
,
C.
Poole
, and
J.
Safko
, Classical Mechanics
(
Addison-Wesley
,
Reading, MA
, 2001
).25.
E. F.
Taylor
, “
A call to action
,” Am. J. Phys.
71
, 423–425
(2003
).26.
C.
Cohen-Tannoudji
,
B.
Diu
, and
F.
Laloe
, Quantum Mechanics
(
Wiley
,
New York
, 1991
), Vol. 1, pp. 20
and 222.27.
D. J.
Griffiths
, Introduction to Quantum Mechanics
(
Pearson Prentice Hall
,
Hoboken, NJ
, 2005
), p. 1
.28.
29.
L. D.
Landau
and
E. M.
Lifshitz
, Quantum Mechanics: Non-Relativistic Theory
(
Pergamon
,
New York
, 1977
), pp. 50
–51
.30.
R. M.
Eisberg
and
R.
Resnick
, Quantum Physics of Atoms Molecules, Solids, Nuclei, and Particles
(
John Wiley & Sons
,
New York
, 1985
), pp. 128
–132
.31.
32.
B. H.
Bransden
and
C. J.
Joachim
, Quantum Mechanics
(
Pearson
,
New York
, 2007
), pp. 82
–85
.33.
J. J.
Sakurai
and
J.
Napolitano
, Modern Quantum Mechanics
(
Cambridge U. P
.,
Cambridge
, 2021
), p. 65
.34.
P. A. M.
Dirac
, The Principles of Quantum Mechanics
(
Oxford U. P
.,
Oxford
, 1958
).35.
R.
Talman
, Geometric Mechanics
(
Wiley
,
New York
, 2007
), pp. 297
–299
.36.
R.
Karam
, “
Why are complex numbers needed in quantum mechanics? Some answers for the introductory level
,” Am. J. Phys.
88
, 39
–45
(2020
).37.
R. C. W.
Misner
,
K. S.
Thorne
, and
J. A.
Wheeler
, Gravitation
(
Princeton U. P
.,
Princeton
, 2017
), p. 491
.38.
R. S. M.
Carroll
, Spacetime and Geometry
(
Cambridge U. P
.,
Cambridge
, 2019
), p. 159
.39.
S.
Weinberg
, The Quantum Theory of Fields
(
Cambridge U. P
.,
Cambridge
, 1995
), pp. 20
–21
and 299.40.
C.
Itzykson
and
J.-B.
Zuber
, Quantum Field Theory
(
McGraw-Hill
,
New York
, 1980
), Chap. 1.41.
R.
Karam
, “
Schrödinger's original struggles with a complex wave function
,” Am. J. Phys.
88
, 433
–438
(2020
).42.
R. A.
Leacock
and
M. J.
Padgett
, “
Hamilton-Jacobi theory and the quantum action variable
,” Phys. Rev. Lett.
50
, 3
–6
(1983
).43.
R. A.
Leacock
and
M. J.
Padgett
, “
Hamilton-Jacobi/action-angle quantum mechanics
,” Phys. Rev. D
28
, 2491
–2502
(1983
).44.
R.
Schiller
, “
Quasi-classical theory of the non-spinning electron
,” Phys. Rev.
125
, 1100
–1108
(1962
).45.
L.
Motz
, “
Quantization and the classical Hamilton–Jacobi equation
,” Phys. Rev.
126
, 378
–382
(1962
).46.
G. B.
Arfken
,
H. J.
Weber
, and
F. E.
Harris
, Mathematical Methods for Physicists
(
Elsevier
,
New York
, 2020
), p. 871
.47.
© 2023 Author(s). Published under an exclusive license by American Association of Physics Teachers.
2023
Author(s)
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.