We present an inexpensive sodium molecular spectroscopy experiment for use in an advanced undergraduate laboratory course in physics or chemistry. The molecules were excited predominantly from the ground X 1 Σ g +( v  = 15) state to the B 1 Π u( v  = 6) state using a commercially available 532-nm broadband diode laser. The laser-induced molecular fluorescence was measured using a miniature fiber-coupled spectrometer at a resolution of 0.5 nm. The spectral peak assignments were done by comparing the observed spectrum with the calculated Franck–Condon values. Important molecular constants such as fundamental frequency, anharmonicity, bond strength, and dissociation energy of the ground electronic state were determined by using the Birge–Sponer extrapolation method. The presence of highly visible blue glowing molecules along the green laser beam creates an engaging laboratory experience. Emphasis is placed on students developing their understanding of the molecular structure, practicing molecular spectroscopic techniques, and applying knowledge of light–matter interactions to a physical system.

1.
M.
Terrell
and
M. F.
Masters
, “
Laser spectroscopy of the cesium dimer as a physics laboratory experiment
,”
Am. J. Phys.
64
(
9
),
1116
1120
(
1996
).
2.
B. L.
Sands
,
M. J.
Welsh
,
S.
Kin
,
R.
Marhatta
,
J. D.
Hinkle
, and
S. B.
Bayram
, “
Raman scattering spectroscopy of liquid nitrogen molecules: An advanced undergraduate physics laboratory experiment
,”
Am. J. Phys.
75
(
6
),
488
495
(
2007
).
3.
J. C.
Williamson
, “
Teaching the rovibronic spectroscopy of molecular iodine
,”
J. Chem. Educ.
84
(
8
),
1355
1359
(
2007
).
4.
J.
Blue
,
S. B.
Bayram
, and
D.
Marcum
, “
Creating, implementing, and sustaining an advanced optical spectroscopy laboratory course
,”
Am. J. Phys.
78
(
5
),
503
509
(
2010
).
5.
S. B.
Bayram
and
M. V.
Freamat
, “
Vibrational spectra of N2: An advanced undergraduate laboratory in atomic and molecular spectroscopy
,”
Am. J. Phys.
80
(
8
),
664
669
(
2012
).
6.
J. C.
Williamson
,
T. S.
Kuntzleman
, and
R. A.
Kafader
, “
A molecular iodine spectral data set for rovibronic analysis
,”
J. Chem. Educ.
90
(
3
),
383
385
(
2013
).
7.
S. B.
Bayram
and
M. V.
Freamat
, “
A spectral analysis of laser induced fluorescence of diatomic iodine
,” in
American Association of Physics Teachers
,
2015
.
8.
S. B.
Bayram
,
M.
Freamat
, and
P. T.
Arndt
, “
Rotational spectra of N 2 +: An undergraduate laboratory in atomic and molecular spectroscopy
,”
Am. J. Phys.
83
(
10
),
867
872
(
2015
).
9.
D. C.
Lincoln
,
D.
DeMille
,
R. V.
Krems
, and
J.
Ye
, “
Cold and ultracold molecules: Science, technology and applications
,”
New J. Phys.
11
,
055049
(
2009
).
10.
H.-K.
Chung
,
K.
Kirby
, and
J. F.
Babb
, “
Theoretical study of the absorption spectra of the sodium dimer
,”
Phys. Rev. A
63
(
3
),
032516
(
2001
).
11.
W.
Demtröder
,
M.
McClintock
, and
R. N.
Zare
, “
Spectroscopy of Na2 using laser-induced fluorescence
,”
J. Chem. Phys.
51
(
12
),
5495
5508
(
1969
).
12.
P.
Kusch
and
M. M.
Hessel
, “
Perturbations in the A 1 Σ u + state of Na2
,”
J. Chem. Phys.
63
(
9
),
4087
4088
(
1975
).
13.
R. H.
Callender
,
J. I.
Gersten
,
R. W.
Leigh
, and
J. L.
Yang
, “
Laser-induced atomic fluorescence from Na2
,”
Phys. Rev. A
14
(
5
),
1672
1682
(
1976
).
14.
W.
Demtröder
and
M.
Stock
, “
Molecular constants and potential curves of Na2, from laser-induced fluorescence
,”
J. Mol. Spectrosc.
55
(
1-3
),
476
486
(
1975
).
15.
O.
Babaky
and
K.
Hussein
, “
The ground state X 1 Σ g + of Na2
,”
Can. J. Phys.
67
(
9
),
912
918
(
1989
).
16.
S.
Magnier
,
Ph
Millie
,
O.
Dulieu
, and
F.
Masnou-Seeuws
, “
Potential curves for the ground and excited states of the Na2 molecule up to the (3s+5p) dissociation limit: Results of two different effective potential calculations
,”
J. Chem. Phys.
98
(
9
),
7113
7125
(
1993
).
17.
M.
Born
and
J. R.
Oppenheimer
, “
On the quantum theory of molecules
,”
Ann. Phys.
389
(
20
),
457
484
(
1927
).
18.
P. M.
Morse
, “
Diatomic molecules according to the wave mechanics. II. Vibrational levels
,”
Phys. Rev.
34
(
1
),
57
64
(
1929
).
19.
Peter F.
Bernath
,
Spectra of Atoms and Molecules
, 3rd ed. (
Oxford University Press
,
New York
,
2016
).
20.
W.
Demtröder
,
Laser Spectroscopy 2
, 5th ed. (
Springer
,
London
,
1983
).
21.
E. U.
Condon
, “
The Franck-Condon principle and related topics
,”
Am. J. Phys.
15
(
5
),
365
374
(
1947
).
22.
G.
Lucchese
,
R. R.
Lucchese
, and
S. W.
North
, “
A new java program for graphical illustration of the Franck Condon principle: Application to the I2 spectroscopy experiment in the undergraduate physical chemistry laboratory
,”
J. Chem. Educ.
87
(
3
),
345
345
(
2010
).
23.
R. J.
Le Roy
, “
Level 8.0: A computer program for solving the radial Schrödinger equation for bound and quasibound levels, Guelph-Waterloo Centre for graduate work in chemistry
.”
Technical Report No. CP-663
(
University of Waterloo
,
Waterloo, Ontario, Canada
,
2007
).
24.
R. J.
Le Roy
, “
LEVEL: A computer program for solving the radial Schrödinger equation for bound and quasibound levels
,”
J. Quant. Spectrosc. Radiat. Transfer
186
,
167
178
(
2017
).
25.
H.
Richter
,
H.
Knöckel
, and
E.
Tiemann
, “
The potential of the Na2 B 1 Π u state
,”
J. Chem. Phys.
157
,
217
229
(
1991
).
26.
P.
Kusch
and
M. M.
Hessel
, “
An analysis of the B 1 Π u X 1 Σ g + band system of Na2
,”
J. Chem. Phys.
68
(
6
),
2591
2606
(
1978
).
27.
A. A.
Radzig
and
B. M.
Smirnov
,
Reference Data on Atoms, Molecules, and Ions
(
Springer-Verlag
,
Berlin, Heidelberg
,
1985
).
28.
P. T.
Arndt
,
V. B.
Sovkov
,
J.
Ma
,
X.
Pan
,
D. S.
Beecher
,
J. Y.
Tsai
,
R.
Livingston
,
V. M.
Marcune
,
A. M.
Lyyra
, and
E. H.
Ahmed
, “
Experimental study of the 3  3 Π g and 4  3 Σ g + states of the rubidium dimer
,”
Phys. Rev. A
105
(
3
),
032823
(
2022
).
29.
P. W.
Atkins
,
Molecular Quantum Mechanics
, 2nd ed. (
Oxford University Press
,
Oxford, Great Britain
1983
).
30.
G.
Herzberg
,
Molecular Spectra and Molecular Structure
(
D. van Nostrand Company, Inc
.
Princeton, NJ
,
1950
).
31.
I.
Duck
and
E. C. G.
Sudarshan
, “
Toward an understanding of the spin-statistics theorem
,”
Am. J. Phys.
66
(
4
),
284
303
(
1998
).
32.
C. R.
Vidal
and
J.
Cooper
, “
Heat-pipe oven: A new, well-defined metal vapor device for spectroscopic measurements
,”
J. Appl. Phys.
40
(
8
),
3370
3374
(
1969
).
33.
C. R.
Vidal
and
F. B.
Haller
, “
Heat pipe oven applications. I. Isothermal heater of well defined temperature. II. Production of metal vapor-gas mixtures
,”
Rev. Sci. Instrum.
42
(
12
),
1779
1784
(
1971
).
34.
C. R.
Vidal
and
M. M.
Hessel
, “
Heat-pipe oven for homogeneous mixtures of saturated and unsaturated vapors; application to NaLi
,”
J. Appl. Phys.
43
(
6
),
2776
2780
(
1972
).
35.
D.
Hite
,
M.
Deebel
,
E.
Thoreson
,
C.
Lengacher
,
R. E.
Miers
, and
M. F.
Masters
, “
Construction of a heat pipe oven on a small budget
,”
Am. J. Phys.
65
(
10
),
1017
1022
(
1997
).
36.
T. T.
Grove
,
W. A.
Hockensmith
,
N.
Cheviron
,
W.
Grieser
,
R.
Dill
, and
M. F.
Masters
, “
Construction of an inexpensive copper heat-pipe oven
,”
Eur. J. Phys.
30
(
6
),
1229
1237
(
2009
).
37.
P.
Todorov
,
T.
Vartanyan
,
C.
Andreeva
,
D.
Sarkisyan
,
G.
Pichler
, and
S.
Cartaleva
, “
High resolution laser spectroscopy of spatially restricted hot alkali atomic and dimer vapor
,”
Opt. Quantum Electron.
52
,
1
12
(
2020
).
38.
D.
Sarkisyan
,
T.
Varzhapetyan
,
A.
Sarkisyan
,
Yu
Malakyan
,
A.
Papoyan
,
A.
Lezama
,
D.
Bloch
, and
M.
Ducloy
, “
Spectroscopy in an extremely thin vapor cell: Comparing the cell-length dependence in fluorescence and in absorption techniques
,”
Phys. Rev. A
69
(
6
),
065802
(
2004
).
39.
A. N.
Nesmeyanov
,
Vapor Pressure of the Elements
(
Academic Press
,
New York
,
1963
), Vol.
87
, p.
345
.
40.
MGL-III-532-20mW. This BBDL was bought ten years ago from <www.optoengine.com>, and current price is about $2k. However, similar laser, PGL-VI-532, with the same output power is currently $300. The NBDL is a 10-W Coherent Verdi with 5 MHz linewidth.
41.
USB4000-UV-VIS spectrometer. This spectrometer, bought from Ocean Optics, is no longer available since the company was bought by <www.oceaninsight.com>; the alternative spectrometer (Flame UV-VIS) price is listed as $3931. On the other hand, <www.thorlabs.com> has a similar compact spectrometer (CCS100) with a current price of $2,211.69.
43.
See supplementary material online for the Franck-Condon factors involved in the experiment.
44.
R. T.
Birge
and
H.
Sponer
, “
The heat of dissociation of non-polar molecules
,”
Phys. Rev.
28
(
2
),
259
283
(
1926
).
45.
L.
Lessinger
, “
Morse oscillators, Birge-Sponer extrapolation, and the electronic absorption spectrum of I2
,”
J. Chem. Educ.
71
(
5
),
388
391
(
1994
).
46.
K. M.
Jones
,
S.
Maleki
,
S.
Bize
,
P. D.
Lett
,
C. J.
Williams
,
H.
Richling
,
H.
Knöckel
,
E.
Tiemann
,
H.
Wang
,
P. L.
Gould
, and
W. C.
Stwalley
, “
Direct measurement of the ground-state dissociation energy of Na2
,”
Phys. Rev. A
54
(
2
),
R1006
R1009
(
1996
).
47.
W. C.
Stwalley
, “
RKR potential curves directly from a single resonance fluorescence doublet series
,”
J. Chem. Phys.
56
(
5
),
2485
2486
(
1972
).
48.
R. J.
LeRoy
, “
Molecular constants and internuclear potential of ground-state molecular iodine
,”
J. Chem. Phys.
52
(
5
),
2683
2689
(
1970
).
49.
F.
Castanõ
,
J.
de Juan
, and
E.
Martinez
, “
The calculation of potential energy curves of diatomic molecules: the RKR method
,”
J. Chem. Educ.
60
(
2
),
91
93
(
1983
).
50.
W. C.
Stwalley
, “
Up and away in the potential landscape of diatomic molecule potential energy curves
,”
J. Mol. Spectrosc.
330
,
14
19
(
2016
).
51.
J.
Katriel
, “
An undergraduate-oriented comment about inverting spectral data to determine the interatomic potential
,”
Am. J. Phys.
88
(
12
),
1147
1150
(
2020
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.