We review an explicit approach to obtaining numerical solutions of the Schrödinger equation that is conceptionally straightforward and capable of significant accuracy and efficiency. The method and its efficacy are illustrated with several examples. Because of its explicit nature, the algorithm can be readily extended to systems with a higher number of spatial dimensions. We show that the method also generalizes the staggered-time approach of Visscher and allows for the accurate calculation of the real and imaginary parts of the wave function separately.

1.
H.
Tal-Ezer
and
R.
Kosloff
,
J. Chem. Phys.
81
,
3967
(
1984
).
2.
C.
Neuhauser
and
M.
Thalhammer
,
BIT Numer. Math.
49
,
199
(
2009
).
3.
J.
Crank
and
P.
Nicolson
,
Proc. Cambridge Philos. Soc.
43
,
50
(
1947
);
Reprinted in
Advances in Computational Mathematics
(
Springer
,
1996
), Vol.
6
, pp.
207
226
.
4.
W.
van Dijk
and
F. M.
Toyama
,
Phys. Rev. E
75
,
036707
(
2007
).
5.
A.
Askar
and
A. S.
Cakmak
,
J. Chem. Phys.
68
,
2794
(
1978
).
6.
R. J.
Rubin
,
J. Chem. Phys.
70
,
4811
(
1979
).
7.
W.
van Dijk
,
Phys. Rev. E
105
,
025303
(
2022
).
8.
W.
van Dijk
,
J.
Brown
, and
K.
Spyksma
,
Phys. Rev. E
84
,
056703
(
2011
).
9.
Z. F.
Tian
and
P. X.
Yu
,
Comput. Phys. Commun.
181
,
861
(
2010
).
10.
D. R.
Lynch
,
Numerical Partial Differential Equations for Environmental Scientists and Engineers: A First Practical Course I
(
Springer Science+Business Media, Inc
.,
New York
,
2005
).
11.
W.
van Dijk
,
F. M.
Toyama
,
S. J.
Prins
, and
K.
Spyksma
,
Am. J. Phys.
82
,
955
(
2014
).
12.
A.
Goldberg
,
H. M.
Schey
, and
J. L.
Swartz
,
Am. J. Phys.
35
,
177
(
1967
).
13.
C.
Leforestier
,
R. H.
Bisseling
,
C.
Cerjan
,
M. D.
Feit
,
R.
Friesner
,
A.
Guldberg
,
A.
Hammerich
,
G.
Jolicard
,
W.
Karrlein
,
H.-D.
Meyer
,
N.
Lipkin
,
O.
Roncero
, and
R.
Kosloff
,
J. Comput. Phys.
94
,
59
(
1991
).
14.
D.
Kosloff
and
R.
Kosloff
,
J. Comput. Phys.
52
,
35
(
1983
).
15.
In the definition of θ, the arctan ( Y / X ) function gives the polar angle coordinate between π and π of the Cartesian point (X, Y). In computer languages, this function is often denoted as atan2(X,Y). The infinitesimal positive ϵ in the definition of ν ensures that the phase θ is a continuous function of t.
16.
W.
van Dijk
and
Y.
Nogami
,
Phys. Rev. C
65
,
024608
(
2002
);
W.
van Dijk
and
Y.
Nogami
,
Errata: Phys. Rev. C
70
,
039901(E)
(
2004
).
17.
R. G.
Winter
,
Phys. Rev.
123
,
1503
(
1961
).
18.
A. J.
Bracken
and
G. F.
Melloy
,
J. Phys. A
27
,
2197
(
1994
).
19.
Y.
Nogami
,
F. M.
Toyama
, and
W.
van Dijk
,
Phys. Lett. A
270
,
279
(
2000
).
20.
W.
van Dijk
and
F. M.
Toyama
,
Phys. Rev. A
100
,
052101
(
2019
).
21.
K.
Mattsson
and
J.
Nordström
,
J. Comput. Phys.
199
,
503
(
2004
).
22.
A.
Nissen
,
G.
Kreiss
, and
M.
Gerritsen
,
J. Sci. Comput.
55
,
173
(
2013
).
23.
W.
van Dijk
,
D. W. L.
Sprung
, and
Y.
Castonguay-Page
,
Phys. Scr.
95
,
065223
(
2020
).
24.
S.
Flügge
,
Practical Quantum Mechanics
(
Springer-Verlag
,
Berlin
,
1974
).
25.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics: Nonrelativistic Theory
(
Pergamon Press
,
London
,
1958
).
26.
F. E.
Low
,
Ann. Phys.
7
,
660
(
1998
).
27.
R. S.
Dumont
and
T. L.
Marchioro
II
,
Phys. Rev. A
47
,
85
(
1993
).
28.
R. S.
Dumont
,
T.
Rivlin
, and
E.
Pollak
,
New J. Phys.
22
,
093060
(
2020
).
29.
P. B.
Visscher
,
Comput. Phys.
5
(
6
),
596
(
1991
).
30.
K. S.
Yee
,
IEEE Trans. Antennas Propag.
14
,
302
(
1966
).
31.
J. R.
Nagel
,
ACES J.
24
,
1
(
2009
).
32.
M.
Zhu
,
F. F.
Huo
, and
B.
Niu
,
ACES J.
36
,
964
(
2021
).
33.
J. M.
Nápoles-Duarte
and
M. A.
Chavez-Rojo
, arXiv:1709.09800 (
2018
).
34.
S. K.
Gray
and
G. G.
Balint-Kurti
,
J. Chem. Phys.
108
,
950
(
1998
).
35.
A. D.
Bandrauk
and
H.
Shen
,
Can. J. Chem.
70
,
555
(
1992
).
36.
R.
Xu
,
T.
Li
, and
X.
Wang
,
Phys. Rev. A
98
,
053435
(
2018
).
37.
S.
Yusofsani
and
M.
Kolesik
,
Phys. Rev. A
101
,
052121
(
2020
).
38.
H.
Gharibnejad
,
B.
Schneider
,
M.
Leadingham
, and
H. J.
Schmale
,
Comput. Phys. Commun.
252
,
106808
(
2020
).
39.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran 77: The Art of Scientific Computing
,
2nd ed
. (
Cambridge U. P
.,
Cambridge
,
1992
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.