The matrix method is used to determine the mass spectrum (energy levels) of quarkonium, a composite particle comprising a quark and an anti-quark. This two-body system is similar to the hydrogen atom but at a reduced length scale. The results obtained by solving the Schrödinger equation for this system are in agreement with experimental and theoretical results obtained via other techniques, showing that problems with complicated potentials can be tackled by undergraduates.

1.
B. A.
Jugdutt
and
F.
Marsiglio
, “
Solving for three-dimensional central potentials using numerical matrix methods
,”
Am. J. Phys.
81
,
343
350
(
2013
).
2.
F.
Marsiglio
, “
The harmonic oscillator in quantum mechanics: A third way
,”
Am. J. Phys.
77
,
253
258
(
2009
).
3.
A. W.
Leissa
, “
The historical bases of the Rayleigh and Ritz methods
,”
J. Sound Vibration
287
(
4–5
),
961
978
(
2005
).
4.
Harry
Yserentant
, “
A short theory of the Rayleigh–Ritz Method
,”
Comput. Methods Appl. Mathematics
13
,
495
502
(
2013
).
5.
J.
Flores
and
P. A.
Mello
, “
The Rayleigh–Ritz method: A graphical proof
,”
Am. J. Phys.
37
,
619
620
(
1969
).
6.
Zettili
Nouredine
,
Quantum Mechanics: Concepts and Applications
(
John Wiley and Sons Ltd Publication
,
New York
,
2009
).
7.
David J.
Griffiths
,
Introduction to Quantum Mechanics
(
Pearson Education
,
London
,
1995
).
8.
Christopher G.
Tully
,
Elementary Particle Physics in a Nutshell
, Illustrated ed. (
Princeton U. P
.,
Princeton
,
2011
).
9.
Michael E.
Peskin
,
Concepts of Elementary Particle Physics
(
Clarendon Press
,
Oxford
,
2019
), p.
487
.
10.
J. J.
Aubert
 et al, “
Experimental observation of a heavy particle
,”
J. Phys. Rev. Lett.
33
,
1404
1406
(
1974
).
11.
J. E.
Augustin
 et al, “
Discovery of a narrow resonance in e+e annihilation
,”
Phys. Rev. Lett.
33
,
1406
1408
(
1974
).
12.
E.
Eichten
,
K.
Gottfried
,
T.
Kinoshita
,
J.
Kogut
,
K. D.
Lane
, and
T.-M.
Yan
, “
Spectrum of charmed quark-antiquark bound states
,”
Phys. Rev. Lett.
34
,
369
372
(
1975
).
13.
Barry J.
Harrington
,
Soo Yong
Park
, and
Asim
Yildiz
, “
Spectrum of heavy mesons in e+e annihilation
,”
Phys. Rev. Lett.
34
,
168
171
(
1975
).
14.
Thomas
Appelquist
and
H. David
Politzer
, “
Heavy quarks and long-lived hadrons
,”
Phys. Rev. D
12
,
1404
1414
(
1975
).
15.
N.
Brambilla
 et al, “
Heavy quarkonium physics
,” CERN Yellow Reports, Monographs, Quarkonium Work Group, Geneva (
2005
).
16.
C.
Quigg
and
Jonathan L.
Rosner
, “
Quantum mechanics with applications to quarkonium
,”
Phys. Rep. Rev. Sect. Phys. Lett.
56
(
4
),
167
235
(
1979
).
17.
C.
McNeile
,
C. T. H.
Davies
,
E.
Follana
,
K.
Hornbostel
, and
G. P.
Lepage
, “
Heavy meson masses and decay constants from relativistic heavy quarks in full lattice QCD
,”
Phys. Rev. D
86
,
074503
(
2012
).
18.
M.
Pillai
,
J.
Goglio
, and
T. G.
Walker
, “
Matrix Numerov method for solving Schrödinger's equation
,”
Am. J. Phys.
80
,
1017
1019
(
2012
).
19.
J.
Killingbeck
, “
Shooting methods for the Schrödinger equation
,”
J. Phys. A: Math. Gen.
20
,
1411
1417
(
1987
).
20.
C. C.
Marston
and
G. G.
Balint-Kurti
, “
The Fourier grid Hamiltonian method for bound state eigenvalues and eigenfunctions
,”
J. Chem. Phys.
91
(
6
),
3571
3576
(
1989
).
21.
C.
Semay
and
B.
Silvestre-Brac
, “
Potential models and meson spectra
,”
Nucl. Phys. A
618
(
4
),
455
482
(
1997
).
22.
E.
Eichten
and
F.
Feinberg
, “
Spin-dependent forces in quantum chromodynamics
,”
Phys. Rev. D
23
,
2724
2744
(
1981
).
23.
Quarks are fermions with spin =1/2, and one has |SqSq¯|SSq+Sq¯.
24.
Wei-Jun
Deng
,
Hui
Liu
,
Long-Cheng
Gui
, and
Xian-Hui
Zhong
, “
Charmonium spectrum and electromagnetic transitions with higher multipole contributions
,”
Phys. Rev. D
95
,
034026
(
2017
).
25.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes: The Art of Scientific Computing
(
Cambridge U. P
.,
Cambridge
,
1986
).
26.
M. S.
Ali
,
A. M.
Yasser
,
G. S.
Hassan
, and
Ch. C.
Moustakidis
, “
Spectra of quark-antiquark bound states via two derived QCD potentials
,”
Quant. Phys. Lett.
5
(
1
),
7
14
(
2016
).
27.
K.
Nakamura
 et al,
J. Phys. G: Nucl. Part. Phys.
37
,
075021
(
2010
).
28.
See supplementary material at https://www.scitation.org/doi/suppl/10.1119/5.0077434 for the program written in fortran 90. It computes the matrix elements Hnm before diagonalizing the matrix H to get the various eigenvalues. The masses of the various charmonium states are represented by these eigenvalues.

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.