A ball that rolls on carpet while also spinning around a vertical axis will experience a drift force that acts perpendicular to its velocity, opposite to the tangential velocity component of the front point of the ball. Here, we present a model of this motion based on three assumptions: the ball rolls without slipping around the point of contact directly below its center of mass; the ball experiences rolling resistance due to a forward-shifted normal force; and the ball experiences a forward-shifted kinetic friction (drift) force. This model produces a simple analytic solution that is consistent with experimental data. Our measurements suggest that the kinetic friction force acts near the front of the contact patch between the ball and carpet.

1.
R.
Cross
, “
Rolling motion of a ball spinning about a near-vertical axis
,”
Phys. Teach.
50
,
25
27
(
2012
).
2.
R.
Cross
, “
Precession of a spinning ball rolling down an inclined plane
,”
Phys. Teach.
53
,
217
219
(
2015
).
3.
D. C.
Hopkins
and
J. D.
Patterson
, “
Bowling frames: Paths of a bowling ball
,”
Am. J. Phys.
45
,
263
266
(
1977
).
4.
C.
Frohlich
, “
What makes bowling balls hook?
,”
Am. J. Phys.
72
,
1170
1177
(
2004
).
5.
R.
Cross
, “
Cue and ball deflection (or ‘squirt’) in billiards
,”
Am. J. Phys.
76
,
205
212
(
2008
).
6.
S.
Mathavan
,
M. R.
Jackson
, and
R. M.
Parkin
, “
Application of high-speed imaging to determine the dynamics of billiards
,”
Am. J. Phys.
77
,
788
794
(
2009
).
7.
M.
Gualtieri
 et al, “
Golfer's dilemma
,”
Am. J. Phys.
74
,
497
501
(
2006
).
8.
O.
Pujol
and
J. Ph.
Perez
, “
On a simple formulation of the golf ball paradox
,”
Eur. J. Phys.
28
,
379
384
(
2007
).
9.
K.
Zengel
, “
Gutterballs and rolling down the tubes
,”
Am. J. Phys.
89
,
459
464
(
2021
).
10.
O.
Pujol
and
J. Ph
Perez
, “
The golfer's curse revisited with motion constants
,”
Am. J. Phys.
90
,
657
665
(
2022
).
11.
A. R.
Penner
, “
The physics of sliding cylinders and curling rocks
,”
Am. J. Phys.
69
,
332
339
(
2001
).
12.
E. T.
Jensen
and
Mark R. A.
Shegelski
, “
The motion of curling rocks: Experimental investigation and semi-phenomenological description
,”
Can. J. Phys.
82
,
791
809
(
2004
).
13.
K.
Voyenli
and
E.
Eriksen
, “
On the motion of an ice hockey puck
,”
Am. J. Phys.
53
,
1149
1153
(
1985
).
14.
M.
Denny
, “
Comment on ‘On the motion of an ice hockey puck,’ by K. Voyenli and E. Eriksen
,”
Am. J. Phys.
74
,
554
558
(
2006
).
15.
R.
Cross
, “
Coulomb's law for rolling friction
,”
Am. J. Phys.
84
,
221
230
(
2016
).
16.
A.
Doménech
,
T.
Doménech
, and
J.
Cerbrián
, “
Introduction to the study of rolling friction
,”
Am. J. Phys.
55
,
231
235
(
1987
).
17.
R.
Knop
, “
A computer model of classical rolling friction
,”
Am. J. Phys.
53
,
720
728
(
2019
).
18.
D.
Brown
, “
Computer program tracker video analysis and modeling tool, Version 5.1.3
,” (
2009
), <http://physlets.org/tracker/>.
19.
P.
Virtanen
 et al, “
SciPy 1.0: Fundamental algorithms for scientific computing in Python
,”
Nat. Methods
17
,
261
272
(
2020
).
20.
L.
Chaplin
and
M. G.
Miller
, “
Coefficient of friction for a sphere
,”
Am. J. Phys.
52
,
1108
1111
(
1984
).
21.
R.
Cross
, “
Origins of rolling friction
,”
Phys. Educ.
52
,
055001
(
2017
).
22.
R.
Cross
, “
Increase in friction force with sliding speed
,”
Am. J. Phys.
73
,
812
816
(
2005
).
23.
Y.
Xu
,
K. L.
Yung
, and
S. M.
Ko
, “
A classroom experiment to measure the speed-dependent coefficient of rolling friction
,”
Am. J. Phys.
75
,
571
574
(
2007
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.