Lorentz transformations between inertial observers, along with Einstein's theory of special relativity, remedied discrepancies between Newtonian physics and Maxwell's electromagnetism caused by the use of the same time in all inertial frames. In view of the fundamental importance of the relativity between inertial observers, there have been several papers deriving generalized Lorentz transformations without using light. Proving that general transformations are linear in space and time can be done in several ways, most commonly relying on a four-dimensional Minkowski spacetime, but other approaches are possible. A method is presented here that establishes the linearity of the transformation by considering velocity transformations in the light of Einstein's first relativity postulate of 1905. Once linearity is obtained, the remainder is fairly straightforward and parallels results and methods found in the literature.

1.
A.
Einstein
, “
Zur elektrodynamik bewegter Körper
,”
Ann. Phys.
17
,
891
921
(
1905
), see page 895: “Die Gesetze, nach denen sich die Zustände der physikalischen Systeme ändern, sind unabhängig davon, auf welches von zwei relativ zueinander in gleichförmiger Translations-bewegung befindlichen Koordinatensystemen diese Zustands-anderungen bezogen werden.” In English: “The laws by which the states of physical systems undergo change are not affected, whether these changes of state be referred to the one or the other of two systems of coordinates in uniform translatory motion.”
2.
J.
Aharoni
,
The Special Theory of Relativity
, 1st ed. (
Clarendon Press
,
Oxford
,
1959
), pp.
6
23
.
3.
John David
Jackson
,
Classical Electrodynamics
, 3rd ed. (
John Wiley
,
New York
,
1999
), pp.
514
532
.
4.
O. L.
De Lange
and
J.
Pierrus
,
Solved Problems in Classical Mechanics: Analytical and Numerical Solutions with Comments
(
Oxford U. P
.,
Oxford
,
2010
), pp.
557
562
.
This is an excellent and delightful treatise on classical mechanics, through problems
.
It
contains as its final chapter a nice introduction of the special relativity formalism, a rather unusual feature in classical mechanics textbooks.
5.
W. v.
Ignatowsky
, “
Das Relativitätsprinzip
,”
Arch. Math. Phys.
17
,
1
24
(
1911
);
W. v.
Ignatowsky
,
Arch. Math. Phys.
18
,
17
40
(
1911
), see page 22 of the second reference: “daß der Übergang von dem ungestrichenen zum gestrichenen System einfach dadurch bewerkstelligt wird, daß man die gestrichenen Größen durch die ungestrichenen ersetzt und umgekehrt, und q durch –q. Diese Regel ist im folgenden stets anzuwenden.”
My translation of the German text
: “The transition from the unprimed to the primed [coordinate] system is simply achieved by replacing the primed variables by the unprimed and vice versa, and q by –q. This rule is always to be used in what follows.”
6.
Leonard J.
Eisenberg
, “
Necessity of the linearity of the relativistic transformations between inertial systems
,”
Am. J. Phys.
35
,
649
(
1967
).
7.
Jean-Marc
Lévy-Leblond
, “
One more derivation of the Lorentz transformation
,”
Am. J. Phys.
44
,
271
277
(
1976
).
8.
N. David
Mermin
, “
Relativity without light
,”
Am. J. Phys.
52
,
119
124
(
1984
).
9.
W. N.
Mathews
, Jr.
, “
Seven formulations of the kinematics of special relativity
,”
Am. J. Phys.
88
,
269
278
(
2020
).
10.
Yaakov
Friedman
and
Tzvi
Scarr
, “
Symmetry and special relativity
,”
Symmetry
11
,
1235
(
2019
).
11.
H. M.
Schwartz
, “
Deduction of the general Lorentz transformations from a set of necessary assumptions
,”
Am. J. Phys.
52
,
346
350
(
1984
).
12.
Brian
Coleman
, “
A dual first-postulate basis for special relativity
,”
Eur. J. Phys.
24
,
301
313
(
2003
).
13.
H.
Almström
, “
Derivation of the Lorentz transformation without the use of light
,”
J. Phys. A: Gen. Phys.
1
,
331
333
(
1968
).
14.
A. R.
Lee
and
T. M.
Kalotas
, “
Lorentz transformations from the first postulate
,”
Am. J. Phys.
43
,
434
437
(
1975
).
15.
Hermann
Minkowski
, “
Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern
,”
Nachr. von der Gesellschaft der Wissenschaften zu Göttingen, Mathem.-Phys. Klasse.
1908
,
53
111
(
1908
).
16.
J. H.
Field
, “
Space-time exchange invariance: Special relativity as a symmetry principle
,”
Am. J Phys.
69
,
569
575
(
2001
).
17.
O. L.
de Lange
, “
Comment on ‘Space–time exchange invariance: Special relativity as a symmetry principle,’ by J. H. Field [Am. J. Phys. 69, 569–575 (2001)]
,”
Am. J. Phys.
70
,
78
79
(
2002
).
18.
Palash B.
Pal
, “
Nothing but relativity
,”
Eur. J. Phys.
24
,
315
319
(
2003
).
19.
H. M.
Schwartz
, “
Axiomatic deduction of the general Lorentz transformations
,”
Am. J. Phys.
30
,
697
707
(
1962
).
20.
Vittorio
Berzi
and
Vittorio
Gorini
, “
Reciprocity principle and the Lorentz transformations
,”
J. Math. Phys.
10
,
1518
1524
(
1969
).
21.
Andrea
Pelissetto
and
Massimo
Testa
, “
Getting the Lorentz transformation without requiring an invariant speed
,”
Am. J. Phys.
83
,
338
340
(
2015
).
22.
Patrick
Moylan
, “
Velocity reciprocity and the relativity principle
,”
Am. J. Phys.
90
,
126
134
(
2022
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.