This paper describes a deterministic dynamical model of the epidemic spreading of disease. We introduce fundamental concepts from nonlinear dynamics and statistical physics, and use computer simulations that can be implemented by advanced undergraduate and by graduate students. It is shown that the model can describe real-world phenomena during an epidemic. Due to its simplicity and flexibility, the model is also a useful tool for research.
REFERENCES
1.
D.
Bernoulli
, “
Essai d'une nouvelle analyse de la mortalité causée par la petite vêrole,” Mém. Math. Phys. Acad. Roy. Sci. Paris (1766). A complete account of this work, with historical notes, can be found in K. Dietz and J.A.P. Heesterbeek, “Daniel Bernoulli's epidemiological model revisited
,” Math. Biosci.
180
, 1
–21
(2002
).2.
W. O.
Kermack
and
A. G.
McKendrick
, “
A contribution to the mathematical theory of epidemics
,” Proc. R. Soc. London, Ser. A
115
, 700
–721
(1927
).3.
J.
Lourenco
,
R.
Paton
,
M.
Ghafari
,
M.
Kraemer
,
C.
Thompson
,
P.
Simmonds
,
P.
Klenerman
, and
S.
Gupta
, “
Fundamental principles of epidemic spread highlight the immediate need for large-scale serological surveys to assess the stage of the SARS-CoV-2 epidemic
,” medRxiv (2020
).4.
D.
Faranda
,
I. P.
Castillo
,
O.
Hulme
,
A.
Jezequel
,
J. S. W.
Lamb
,
Y.
Sato
, and
E. L.
Thompson
, “
Asymptotic estimates of SARS-CoV-2 infection counts and their sensitivity to stochastic perturbation
,” Chaos
30
, 051107
(2020
).5.
L.
Di Domenico
,
G.
Pullano
,
C. E.
Sabbatini
,
P.-Y.
Boëlle
, and
V.
Colizza
, “
Impact of lockdown on COVID-19 epidemic in Île-de-France and possible exit strategies
,” BMC Med.
18
, 240
(2020
).6.
T.
Carletti
,
D.
Fanelli
, and
F.
Piazza
, “
COVID-19: The unreasonable effectiveness of simple models
,” Chaos Solitons Fractals X
5
, 100034
(2020
).7.
R.
Cohen
and
S.
Havlin
, Complex Networks: Structure, Robustness and Function
(
Cambridge U. P
.,
Cambridge
, 2010
).8.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D. U.
Hwang
, “
Complex networks: Structure and dynamics
,” Phys. Rep.
424
, 175
–308
(2006
).9.
D.
Stauffer
and
A.
Aharony
, Introduction to Percolation Theory
, 2nd ed. (
Taylor and Francis
,
London
, 1994
).10.
B.
Karrer
,
M. E. J.
Newman
, and
L.
Zdeborova
, “
Percolation on sparse networks
,” Phys. Rev. Lett.
113
, 208702
(2014
).11.
A.
Politi
,
R.
Livi
,
G. L.
Oppo
, and
R.
Kapral
, “
Unpredictable behaviour in stable systems
,” Europhys. Lett.
22
, 571
–576
(1993
).12.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
, Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge U. P
.,
Cambridge
, 2003
), Vol.
12
.13.
N. F.
Rulkov
, “
Modeling of spiking-bursting neural behavior using two-dimensional map
,” Phys. Rev. E
65
, 041922
(2002
).14.
J.
Beggs
and
D.
Plenz
, “
Neuronal avalanches in neocortical circuits
,” J. Neurosci.
23
, 11167
–11177
(2003
).15.
T.
Caby
and
G.
Mantica
, “
Extreme value theory of evolving phenomena in complex dynamical systems: Firing cascades in a model of a neural network
,” Chaos
30
, 043118
(2020
).16.
N.
Friedman
,
S.
Ito
,
B. A. W.
Brinkman
,
M.
Shimono
,
R. E. L.
DeVille
,
K. A.
Dahmen
,
J. M.
Beggs
, and
T. C.
Butler
, “
Universal critical dynamics in high resolution neuronal avalanche data
,” Phys. Rev. Lett.
108
, 208102
(2012
).17.
P.
Bak
,
C.
Tang
, and
K.
Wiesenfeld
, “
Self-organized criticality: An explanation of the 1/f noise
,” Phys. Rev. Lett.
59
, 381
–384
(1987
).18.
D.
Sornette
,
C.
Vanneste
, and
L.
Knopoff
, “
Statistical model of earthquake foreshocks
,” Phys. Rev. A
45
, 8351
–8357
(1992
).19.
M.
Hirata
, “
Poisson law for Axiom A diffeomorphisms
,” Ergodic Theory Dyn. Syst.
5
, 533
–556
(1993
).20.
N.
Haydn
,
Y.
Lacroix
, and
S.
Vaienti
, “
Hitting and return times in ergodic dynamical systems
,” Ann. Probab.
33
, 2043
–2050
(2005
).21.
D. B.
Larremore
,
M. Y.
Carpenter
,
E.
Ott
, and
J. G.
Restrepo
, “
Statistical properties of avalanches in networks
,” Phys. Rev. E
85
, 066131
(2012
).22.
A.
Boyarsky
and
P.
Gora
, Laws of Chaos. Invariant Measures and Dynamical Systems in One Dimension (Probability and Its Applications)
(
Birkhauser
,
Boston
, 1997
).23.
Y.
Pomeau
and
P.
Manneville
, “
Intermittent transition to turbulence in dissipative dynamical systems
,” Commun. Math. Phys.
74
, 189
–197
(1980
).24.
G.
Mantica
, “
The global statistics of return times: Return time dimensions versus generalized measure dimensions
,” J. Stat. Phys.
138
, 701
–727
(2010
).25.
Y. B.
Pesin
, “
Characteristic Lyapunov exponents and smooth ergodic theory
,” Russ. Math. Surv.
32
, 55
–114
(1977
).26.
L.
Bottcher
,
J.
Nagler
, and
H. J.
Herrmann
, “
Critical behaviors in contagion dynamics
,” Phys. Rev. Lett.
118
, 088301
(2017
).27.
See <https://elsenaju.eu/Calculator/ODE-System-2x2.htm> provides an online solver that can be used to verify solutions of Problem 13 and to experiment by changing system parameters and initial conditions, to also simulate the cases δ = 0 and/or γ = 0.
28.
L.
Bunimovich
and
A.
Yurchenko
, “
Where to place a hole to achieve a maximal escape rate
,” Israel J. Math.
182
, 229
–252
(2011
).29.
K. E.
Hamilton
and
L. P.
Pryadko
, “
Tight lower bound for percolation threshold on an infinite graph
,” Phys. Rev. Lett.
113
, 208701
(2014
).30.
31.
J. P.
Sethna
,
K. A.
Dahmen
, and
C. R.
Myers
, “
Crackling noise
,” Nature
410
, 242
–250
(2001
).32.
C. W.
Eurich
,
J. M.
Herrmann
, and
U. A.
Ernst
, “
Finite-size effects of avalanche dynamics
,” Phys. Rev. E
66
, 066137
(2002
).© 2022 Author(s). Published under an exclusive license by American Association of Physics Teachers.
2022
Author(s)
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.