When ice melts from a large ice sheet and the melt water runs into the ocean, global-mean sea level rises but, surprisingly, local sea level near the ice sheet may well drop. This is largely because the loss of mass reduces the gravitational pull of the ice sheet. We present a simple, analytically tractable model to illustrate this effect. We look first at a flat earth with a circular continent containing an ice sheet that is modeled as a point mass at its center and then extend the calculation to a rigid spherical non-rotating earth. With a bit more mathematical sophistication, we then carry out calculations for somewhat more realistic ice distributions and include the additional gravitation of the mass of displaced sea water. We give numerical results for the “fingerprint” of sea level change resulting from a 1000-Gt (1015-kg) loss of ice on a rigid, non-rotating earth, with parameter values appropriate to the Greenland and Antarctic ice sheets.

1.
A standard terminology has been recommended by
J. M.
Gregory
et al, “
Concepts and terminology for sea level: Mean, variability and change, both local and global
,”
Surv. Geophys.
40
,
1251
1289
(
2019
).
2.
M.
Morlighem
et al, “
BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation
,”
Geophys. Res. Lett.
44
,
11051
11061
, https://doi.org/10.1002/2017GL074954 (
2017
).
3.
M.
Morlighem
et al, “
Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet
,”
Nat. Geosci.
13
,
132
137
(
2020
).
4.
H.
Hergesell
, “
Über die änderung der gleichgewichtsflächen der erde durch die bildung polarer eismassen und die dadurch verursachten schwankungen des meersniveaus
,”
Beitr. Geophys.
1
,
59
114
(
1887
);
H.
Hergesell
, “
Über den einfluss, welchen eine geoidänderung auf die höhen-verhältnisse eines plateaus und auf die gefällswerthe eines flusslaufes haben kann
,”
Beitr. Geophys.
1
,
114
132
(
1887
).
5.
E.
von Drygalski
, “
Die geoiddeformationen der eiszeit
,”
Z. Ges. Erdk. Berlin
22
,
169
280
(
1887
).
6.
R. S.
Woodward
, “
On the form and position of the sea level
,”
United States Geol. Survey Bull.
48
,
87
170
(
1888
).
7.
J. M.
Wahr
, “
Deformation induced by polar motion
,”
J. Geophys. Res.
90
(
B11
),
9363
9368
, https://doi.org/10.1029/JB090iB11p09363 (
1985
).
8.
A.
Shepherd
,
E. R.
Ivins
,
E.
Rignot
et al (
IMBIE-2 Team), “Mass balance of the Greenland ice sheet 1992–2018
,”
Nature
579
,
233
239
(
2020
).
9.
A.
Shepherd
,
E. R.
Ivins
,
E.
Rignot
et al (
IMBIE Team), “Mass balance of the Antarctic ice sheet from 1992–2018
,”
Nature
558
,
219
222
(
2018
).
10.
J. G.
Cogley
, “
Area of the ocean
,”
Mar. Geodesy
35
,
379
388
(
2012
).
11.
W. E.
Farrell
and
J. A.
Clark
, “
On postglacial sea level
,”
Geophys. J. R. Astron. Soc.
46
,
647
667
(
1976
).
12.
G. A.
Milne
and
J. X.
Mitrovica
, “
Postglacial sea-level change on a rotating Earth
,”
Geophys. J. Int.
133
,
1
19
(
1998
).
13.
B.
de Boer
,
P.
Stocchi
,
P. L.
Whitehouse
, and
R. S. W.
van de Wal
, “
Current state and future perspectives on coupled ice-sheet—Sea-level modelling
,”
Quaternary Sci. Rev.
169
,
13
28
(
2017
).
14.
G.
Spada
, “
Glacial isostatic adjustment and contemporary sea level rise: An overview
,”
Surv. Geophys.
38
,
153
185
(
2017
).
15.
P. L.
Whitehouse
, “
Glacial isostatic adjustment modelling: Historical perspectives, recent advances, and future directions
,”
Earth Surf. Dynam.
6
,
401
429
(
2018
).
16.
S.
Adhikari
and
E. R.
Ivins
, “
Climate-driven polar motion
:
2003–2015,” Sci. Adv.
2
,
e1501693
(
2016
).
17.
P.
Fretwell
et al, “
Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica
,”
Cryosphere
7
,
375
393
(
2013
).
18.
For background information on the shape and gravitational field of the earth, see the following undergraduate textbooks:
C. B.
Officer
,
Introduction to Theoretical Geophysics
(
Springer
,
New York
,
1977
);
W.
Torge
,
Gravimetry
(
de Gruyter
,
Berlin
,
1989
).
19.
L. L. A.
Vermeersen
and
H. H. A.
Schotman
, “
Constraints on glacial isostatic adjustment from GOCE and sea level data
,”
Pure Appl. Geophys.
166
,
1261
1281
(
2009
).
20.
See, e.g.,
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley
,
New York
,
1999
), Secs. 3.1–3.3.
21.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1970
), Chap. 22.
22.
L.
Schröder
et al, “
Four decades of Antarctic surface elevation changes from multi-mission satellite altimetry
,”
Cryosphere
13
,
427
449
(
2019
).
23.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes
(
Cambridge
,
New York
,
1986
), Sec. 5.4.
24.
E.
Larour
,
E. R.
Ivins
, and
S.
Adhikari
, “
Should coastal planners have concern over where land ice is melting?
,”
Sci. Adv.
3
,
e1700537
(
2017
).
25.
J. X.
Mitrovica
et al, “
Quantifying the sensitivity of sea level change in coastal localities to the geometry of polar ice mass flux
,”
J. Clim.
31
,
3701
3709
(
2018
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.