Defining local pressures is pivotal to understanding phenomena such as buoyancy and atmospheric physics, which always require space-varying pressure fields to be considered. Such fields have precise definitions within the frameworks of hydro-thermodynamics and the kinetic theory of gases, but a pedagogical approach based on standard statistical mechanics techniques is still lacking. In this paper, we propose a new microscopic definition of local pressure inside a classical fluid, relying upon a local barometer potential that is built into the many-particle Hamiltonian. This setup allows pressure to be locally defined as an ensemble average of the radial force exerted by the barometer potential on the gas' particles. Moreover, this same framework is also employed in a microscopic derivation of buoyancy of immersed bodies in the presence of arbitrary external fields. As instructive examples, buoyant forces are calculated for ideal fluids in the presence of a uniform force field, in the presence of a spherical harmonic confinement field and in rotation with a constant angular velocity.

1.
F.
Reif
,
Fundamentals of Thermal and Statistical Physics
(
Waveland Press
, New York,
1965
).
2.
W.
Pauli
and
C. P.
Enz
,
Pauli Lectures on Physics: Volume 3, Thermodynamics and the Kinetic Theory of Gases
(Dover Publications, Mineola, NY,
1973
).
3.
M.
Kardar
,
Statistical Physics of Particles
(Cambridge University Press, Cambridge, UK,
2007
).
4.
M. E.
Loverude
,
C. H.
Kautz
, and
P. R. L.
Heron
, “
Student understanding of the first law of thermodynamics: Relating work to the adiabatic compression of an ideal gas
,”
Am. J. Phys.
70
,
137
148
(
2002
).
5.
M. E.
Loverude
,
C. H.
Kautz
, and
P. R. L.
Heron
, “
Helping students develop an understanding of Archimedes' principle. I. Research on student understanding
,”
Am. J. Phys.
71
,
1178
1187
(
2003
).
6.
P. R. L.
Heron
,
M. E.
Loverude
,
P. S.
Shaffer
, and
L. C.
McDermott
, “
Helping students develop an understanding of Archimedes' principle. II. Development of research-based instructional materials
,”
Am. J. Phys.
71
,
1188
1195
(
2003
).
7.
J.
Bierman
and
E.
Kincanon
, “
Reconsidering Archimedes' principle
,”
Phys. Teach.
41
,
340
344
(
2003
).
8.
C. H.
Kautz
,
P. R. L.
Heron
,
M. E.
Loverude
, and
L. C.
McDermott
, “
Student understanding of the ideal gas law, Part I: A macroscopic perspective
,”
Am. J. Phys.
73
,
1055
1063
(
2005
).
9.
C. H.
Kautz
,
P. R. L.
Heron
,
P. S.
Shaffer
, and
L. C.
McDermott
, “
Student understanding of the ideal gas law, Part II: A microscopic perspective
,”
Am. J. Phys.
73
,
1064
1071
(
2005
).
10.
M. E.
Loverude
,
P. R. L.
Heron
, and
C. H.
Kautz
, “
Identifying and addressing student difficulties with hydrostatic pressure
,”
Am. J. Phys.
78
,
75
85
(
2010
).
11.
D. G.
Andrews
,
An Introduction to Atmospheric Physics
(
Cambridge University Press
, Cambridge, UK,
2010
).
12.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(Pergamon Press, Oxford, UK,
1987
).
13.
J. H.
Irving
and
J. G.
Kirkwood
, “
The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics
,”
J. Chem. Phys.
18
,
817
829
(
1950
).
14.
J. G.
Kirkwood
,
F. P.
Buff
, and
M. S.
Green
, “
The statistical mechanical theory of transport processes. III. The coefficients of shear and bulk viscosity of liquids
,”
J. Chem. Phys.
17
,
988
994
(
1949
).
15.
J.
de Boer
, “
Molecular distribution and equation of state of gases
,”
Rep. Prog. Phys.
12
,
305
374
(
1949
).
16.
M.
Kac
and
J. M.
Luttinger
, “
A formula for the pressure in statistical mechanics
,”
J. Math. Phys.
14
,
583
585
(
1973
).
17.
B.
Leroy
, “
Archimedes principle: A simple derivation
,”
Eur. J. Phys.
6
,
56
56
(
1985
).
18.
R. E.
Vermillion
, “
Derivations of Archimedes' principle
,”
Am. J. Phys.
59
,
761
762
(
1991
).
19.
J. A.
Van den Akker
, “
Generalized Archimedes' principle
,”
Am. J. Phys.
58
,
1106
1108
(
1990
).
20.
L.
Mistura
, “
The definition of the pressure tensor in the statistical mechanics of nonuniform classical fluids
,”
Int. J. Thermophys.
8
,
397
403
(
1987
).
21.
G. L.
Wick
and
P. F.
Tooby
, “
Centrifugal buoyancy forces
,”
Am. J. Phys.
45
,
1074
1076
(
1977
).
22.
F. M. S.
Lima
and
F. F.
Monteiro
, “
Bouyant force in a nonuniform gravitational field
,”
Rev. Bras. Ensino Fis.
35
,
3701-1
3701-4
(
2013
).
23.
Strictly, these are not necessary conditions, but they ensure that the function has the correct properties in the limiting procedure later on for U p to exclude the particles from the interior of the probe.
24.
B.
Reed
, “
Archimedes' law sets a good energy-minimization example
,”
Phys. Educ.
39
,
322
323
(
2004
).
25.
A.
Altintas
, “
Archimedes' principle as a application of the divergence theorem
,”
IEEE Trans. Educ.
33
,
222
(
1990
).
26.
F. M. S.
Lima
, “
Using surface integrals for checking Archimedes' law of buoyancy
,”
Eur. J. Phys.
33
,
101
113
(
2011
).
27.
Physics League Across Numerous Countries for Kick-ass Students (PLANCKS)
, 8th ed., Porto, Portugal (
2021
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.