A study implementing a coaxial photonic crystal with a simple structure composed of only one type of coaxial cable is described. The coaxial photonic crystal consists of alternating sections of a single cable and N parallel cables, with impedances of Z H and Z H / N, respectively. The high mismatch in impedance at the interfaces enables access to a highly superluminal group velocity with few cables. An easily realizable method is also presented to measure both the amplitude of transmission and the phase of the crystal by using an oscilloscope and a function generator. The measurements were validated by an advanced vector network analyzer and matched the results of theoretical analysis based on the transfer matrix method. The experiment only requires electronic components and equipment that are typically used in undergraduate teaching laboratories.

1.
A.
Haché
and
A.
Slimani
, “
A model coaxial photonic crystal for studying band structures, dispersion, field localization, and superluminal effects
,”
Am. J. Phys.
72
,
916
921
(
2004
).
2.
M.
del Mar Sánchez-López
,
J. A.
Davis
, and
K.
Crabtree
, “
Coaxial cable analogs of multilayer dielectric optical coatings
,”
Am. J. Phys.
71
,
1314
1319
(
2003
).
3.
A.
Perrier
,
Y.
Guilloit
,
É.
Le Cren
, and
Y.
Dumeige
, “
A simple model system to study coupled photonic crystal microcavities
,”
Am. J. Phys.
89
,
538
545
(
2021
).
4.
G. J.
Schneider
,
S.
Hanna
,
J. L.
Davis
, and
G. H.
Watson
, “
Defect modes in coaxial photonic crystals
,”
J. Appl. Phys.
90
,
2642
2649
(
2001
).
5.
A.
Haché
and
L.
Poirier
, “
Long-range superluminal pulse propagation in a coaxial photonic crystal
,”
Appl. Phys. Lett.
80
,
518
520
(
2002
).
6.
J. N.
Munday
and
W. M.
Robertson
, “
Negative group velocity pulse tunneling through a coaxial photonic crystal
,”
Appl. Phys. Lett.
81
,
2127
2129
(
2002
).
7.
J. N.
Munday
and
W. M.
Robertson
, “
Observation of negative group delays within a coaxial photonic crystal using an impulse response method
,”
Opt. Commun.
273
,
32
36
(
2007
).
8.
A.
Haché
and
L.
Poirier
, “
Anomalous dispersion and superluminal group velocity in a coaxial photonic crystal: Theory and experiment
,”
Phys. Rev. E
65
,
036608
(
2002
).
9.
J. N.
Munday
and
W. M.
Robertson
, “
Slow electromagnetic pulse propagation through a narrow transmission band in a coaxial photonic crystal
,”
Appl. Phys. Lett.
83
,
1053
1055
(
2003
).
10.
L.
Poirier
and
A.
Haché
, “
Nonlinear coaxial photonic crystal
,”
Appl. Phys. Lett.
78
,
2626
2628
(
2001
).
11.
G.
D'Aguanno
,
M.
Centini
,
M.
Scalora
,
C.
Sibila
,
M. J.
Bloemer
,
C. M.
Bowden
,
J. W.
Haus
, and
M.
Bertolotti
, “
Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures
,”
Phys. Rev. E
63
,
036610
(
2001
).
12.
M.
Centini
,
C.
Sibilia
,
M.
Scalora
,
G.
D'Aguanno
,
M.
Bertolotti
,
M. J.
Bloemer
,
C. M.
Bowden
, and
I.
Nfedov
, “
Dispersive properties of finite, one-dimensional photonic band gap structures: Applications to nonlinear quadratic interactions
,”
Phys. Rev. E
60
,
4891
4898
(
1999
).
13.
J. S.
Bobowski
, “
Modeling and measuring the non-ideal characteristics of transmission lines
,”
Am. J. Phys.
89
,
96
104
(
2021
).
14.
M. D.
Stenner
,
D. J.
Gauthier
, and
M. A.
Neifeld
, “
The speed of information in a ‘fast-light’ optical medium
,”
Nature
425
,
695
698
(
2003
).
15.
M. G.
Natrella
, “
Estimation of
m
and
σ,” in
Experimental Statistics
(
Dover Publications
,
New York
,
2005
), Chap. 1, pp.
1-10
1-11
.
16.
ISO/IEC Guide 98-3: 2008(E),
Uncertainty of Measurement–Part 3: Guide to the Expression of Uncertainty in Measurement (GUM: 1995)
(
ISO/IEC
,
Geneva, Switzerland
,
2008
), p.
19
, Eq. (11).
17.
See <https://www.sdr-kits.net/VNWA-3SE-Models> for “
DG8SAQ VNWA 3SE Automatic 2 Port Models
.”
18.
J. P.
Gerval
and
Y. L.
Ru
, “
VELab: A virtual lab for electronics virtual experiments
,”
Adv. Technol. Learn.
3
,
82
88
(
2006
).
19.
D. J.
O'Brien
, “
A guide for incorporating e-teaching of physics in a post-COVID world
,”
Am. J. Phys.
89
,
403
412
(
2021
).
20.
A. K.
Mohammed
,
H. E.
El Zoghby
, and
M. M.
Elmesalawy
, “
Remote controlled laboratory experiments for engineering education in the post-COVID-19 era: Concept and example
,” in
2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)
, Giza, Egypt (
IEEE
,
2020
), pp.
629
634
.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.