We present a set of experiments and computations suitable for introducing upper-level undergraduate physics and engineering students to the interdisciplinary field of nanoplasmonics for periods ranging from a week-long advanced laboratory session to a summer research project. The end product is a tunable optofluidic device capable of detecting changes in a fluid medium as low as 0.002 refractive index units. The sensing element—a thin gold film on a glass prism coupled to a microfluidic cell—owes its sensitivity to the bound nature of the surface plasmon–polariton waves that are resonantly excited by evanescently coupled light at the gold–fluid interface. Pedagogically, surface plasmon resonance (SPR) sensing immerses students in the rich physics of nanoscale optics and evanescent waves in constructing and operating a precision apparatus and in developing theoretical, analytical, and numerical models to aid both in the physical understanding and engineering optimization of the SPR sensor.

1.
J.
Homola
, “
Present and future of surface plasmon resonance biosensors
,”
Anal. Bioanal. Chem.
377
,
528
539
(
2003
).
2.
R.
Gordon
, “
Surface plasmon nanophotonics: A tutorial
,”
IEEE Nanotechnol. Mag.
2
,
12
18
(
2008
).
3.
A.
Shalabney
and
I.
Abdulhalim
, “
Sensitivity-enhancement methods for surface plasmon sensors
,”
Laser Photonics Rev.
5
,
571
606
(
2011
).
4.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
, 2nd ed. (
Cambridge U. P
.,
Cambridge
,
2012
).
5.
Modern Plasmonics
, edited by
A. A.
Maradudin
,
J. R.
Sambles
, and
W. L.
Barnes
(
Elsevier
,
Amsterdam
,
2014
).
6.
M.
Piliarik
and
J.
Homola
, “
Surface plasmon resonance (SPR) sensors: Approaching their limits?
,”
Opt. Express
17
,
16505
16517
(
2009
).
7.
A. V.
Kabashin
,
S.
Patskovsky
, and
A. N.
Grigorenko
, “
Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing
,”
Opt. Express
17
,
21191
21204
(
2009
).
8.
J.
Homola
, “
Surface plasmon resonance sensors for detection of chemical and biological species
,”
Chem. Rev.
108
,
462
493
(
2008
).
9.
H. H.
Nguyen
,
J.
Park
,
S.
Kang
, and
M.
Kim
, “
Surface plasmon resonance: A versatile technique for biosensor applications
,”
Sensors
15
,
10481
10510
(
2015
).
10.
P.
Singh
, “
SPR Biosensors: Historical perspectives and current challenges
,”
Sens. Actuators B Chem.
229
,
110
130
(
2016
).
11.
C. M.
Miyazaki
,
F. M.
Shimizu
, and
M.
Ferreira
, “
Surface plasmon resonance (SPR) for sensors and biosensors
,” in
Nanocharacterization Techniques
, edited by
A. L.
Da Róz
,
M.
Ferreira
,
F.
de Lima Leite
, and
O. N.
Oliveira
(
William Andrew Publishing
,
New York
,
2017
), Chap. 6, pp.
183
200
.
12.
S. A.
Perdomo
,
J. M.
Marmolejo-Tejada
, and
A.
Jaramillo-Botero
, “
Review—Bio-nanosensors: Fundamentals and recent applications
,”
J. Electrochem. Soc.
168
,
107506
(
2021
).
13.
Q.
Duan
,
Y.
Liu
,
S.
Chang
,
H.
Chen
, and
J. h
Chen
, “
Surface plasmonic sensors: Sensing mechanism and recent applications
,”
Sensors
21
,
5262
(
2021
).
14.
H.
Kurt
,
P.
Pishva
,
Z. S.
Pehlivan
,
E. G.
Arsoy
,
Q.
Saleem
,
M. K.
Bayazit
, and
M.
Yüce
, “
Nanoplasmonic biosensors: Theory, structure, design, and review of recent applications
,”
Anal. Chim. Acta
1185
,
338842
(
2021
).
15.
A. S.
Barker
, “
An optical demonstration of surface plasmons on gold
,”
Am. J. Phys.
42
,
1123
1126
(
1974
).
16.
H. J.
Simon
,
D. E.
Mitchell
, and
J. G.
Watson
, “
Surface plasmons in silver films—A novel undergraduate experiment
,”
Am. J. Phys.
43
,
630
636
(
1975
).
17.
J. D.
Swalen
,
J. G.
Gordon
,
M. R.
Philpott
,
A.
Brillante
,
I.
Pockrand
, and
R.
Santo
, “
Plasmon surface polariton dispersion by direct optical observation
,”
Am. J. Phys.
48
,
669
672
(
1980
).
18.
P.
Orfanides
,
T. F.
Buckner
,
M. C.
Buncick
,
F.
Meriaudeau
, and
T. L.
Ferrell
, “
Demonstration of surface plasmons in metal island films and the effect of the surrounding medium—An undergraduate experiment
,”
Am. J. Phys.
68
,
936
942
(
2000
).
19.
B. K.
Lavine
,
D. J.
Westover
,
L.
Oxenford
,
N.
Mirjankar
, and
N.
Kaval
, “
Construction of an inexpensive surface plasmon resonance instrument for use in teaching and research
,”
Microchem. J.
86
,
147
155
(
2007
).
20.
E.
Sánchez
, “
Surface plasmon resonance laboratory
,” in
AAPT Summer Meeting - Workshop 38: Advanced Labs
, American Association of Physics Teachers Conference Proceedings, Portland, Oregon, July 17–21 (
2010
).
21.
Y.
Tang
,
X.
Zeng
, and
J.
Liang
, “
Surface plasmon resonance: An introduction to a surface spectroscopy technique
,”
J. Chem. Educ.
87
,
742
746
(
2010
).
22.
O.
Pluchery
,
R.
Vayron
, and
K.-M.
Van
, “
Laboratory experiments for exploring the surface plasmon resonance
,”
Eur. J. Phys.
32
,
585
599
(
2011
).
23.
P. W. R.
Connolly
and
A.
Kaplan
, “
Demonstrating the angular, wavelength and polarization dependence of surface plasmon resonance on thin gold films—An undergraduate experiment
,”
Am. J. Phys.
84
,
775
779
(
2016
).
24.
B. J.
McFarland
,
Measuring Novel Protein-Protein Binding with Surface Plasmon Resonance in the Physical Chemistry Lab
(
ACS
,
Washington, D.C
,
2018
), Chap. 2, pp.
15
31
.
25.
E. C.
Le Ru
and
P. G.
Etchegoin
,
Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects
(
Elsevier
,
Amsterdam
,
2009
).
26.
U.
Hohenester
,
Nano and Quantum Optics
(
Springer
,
New York
,
2020
).
27.
M. N.
Polyanskiy
, “
Refractive index of Au (Gold) - Johnson and Christy (1972)
,” in Refractive Index Database; retrieved from <https://refractiveindex.info/?shelf=main&book=Au&page=Johnson> on May 30, 2022.
28.
M. N.
Polyanskiy
, “
Refractive index of Air - Ciddor (1996)
,” in Refractive Index Database; retrieved from <https://refractiveindex.info/?shelf=other&book=air&page=Ciddor> on May 30, 2022.
29.
W. L.
Barnes
,
A.
Dereux
, and
T. W.
Ebbesen
, “
Surface plasmon subwavelength optics
,”
Nature
424
,
824
830
(
2003
).
30.
S. A.
Maier
,
Plasmonics: Fundamentals and Applications
(
Springer Science+Business Media
,
New York
,
2007
).
31.
D.
Sarid
and
W. A.
Challener
,
Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling, and Applications
(
Cambridge U. P
.,
Cambridge
,
2010
).
32.
J. M.
Pitarke
,
V. M.
Silkin
,
E. V.
Chulkov
, and
P. M.
Echenique
, “
Theory of surface plasmons and surface-plasmon polaritons
,”
Rep. Prog. Phys.
70
,
1
87
(
2006
).
33.
L. J. M.
Herrera
,
D. M.
Arboleda
,
D. C.
Schinca
, and
L. B.
Scaffardi
, “
Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles
,”
J. Appl. Phys.
116
,
233105
(
2014
).
34.
Newport Corp.
, “
High-performance rotation stage (5 arcmin vernier scale), Model 481-A-S
,” USD 375 at <https://www.newport.com/p/481-A-S> on May 19,
2022
.
35.
E. U.
Donev
, “
Interactive plot of θint vs. α
,” made with Desmos Graphing Calculator, <https://www.desmos.com/calculator/uv8cf3uya1>.
36.
Platypus Technologies, LLC
, “
SPRchip (50-nm Au, 2-nm Ti [private communication], 1 mm x 18 mm x 18 mm SF10 Glass), 5 chips, SKU SPR-1000-050
,” USD 330 at <https://www.platypustech.com/product/sprchip> on May 30,
2022
.
37.
Ealing Catalog USA
, “
Equilateral Prism (30 mm, SF10 Glass), Part Num. 24-2966-000
,” USD 120 at <https://www.ealingcatalog.com/30-mm-equilateral-prism-sf10-glass.html> on March 22,
2022
.
38.
ibidi GmbH
, “
sticky-Slide VI 0.4 (self-adhesive underside, 6 bottomless channels
,” USD 360 per 15 slides at <https://ibidi.com/sticky-slides/65-sticky-slide-vi-04.html> on March 22,
2022
. The company also offers free samples upon request.
39.
PetSmart LLC
, “
Aquarium Mini Airline Tubing (6 ft), Item Num. 5098119
,” USD 5 at <https://www.petsmart.com/fish/filters-and-pumps/air-and-water-pumps/top-fin-aquarium-mini-airline-tubing-5098119.html> on May 20,
2022
.
40.
E.
Kretschmann
and
H.
Raether
, “
Notizen: Radiative decay of non radiative surface plasmons excited by light
,”
Z. Naturforsch. A
23
,
2135
2136
(
1968
).
41.
H.
Raether
,
Surface Plasmons on Smooth and Rough Surfaces and on Gratings
(
Springer
,
Berlin
,
1988
).
42.
Strictly speaking, a frequency-dispersive quantity, e.g., ñAu(ω), is mathematically equivalent to the same quantity expressed as a function of the vacuum wavelength λvac=2πc/ω. Although λvac=632.991nm for the red HeNe laser, we chose to use the HeNe wavelength in air, λ0=632.8nm, and express the dispersive quantities in terms of the latter since it is much more common in the literature and, e.g., ñAu(λ0)ñAu(λvac)
43.
M. N.
Polyanskiy
, “
Refractive index of SF10 - SCHOTT
,” in Refractive Index Database; retrieved from <https://refractiveindex.info/?shelf=glass&book=SF10&page=SCHOTT> on May 30,
2022
.
44.
B. A.
Sexton
,
B. N.
Feltis
, and
T. J.
Davis
, “
Characterisation of gold surface plasmon resonance sensor substrates
,”
Sens. Actuators A Phys.
141
,
471
475
(
2008
).
45.
M. N.
Polyanskiy
, “
Refractive index of Ti (Titanium) - Johnson and Christy (1974)
,” in Refractive Index Database; retrieved from <https://refractiveindex.info/?shelf=main&book=Ti&page=Johnson> on May 30,
2022
.
46.
J. B.
Maurya
and
Y. K.
Prajapati
, “
Influence of adhesion layer on performance of surface plasmon resonance sensor
,”
IET Optoelectron.
12
,
168
175
(
2018
).
47.
Cargille Laboratories
, “
Refractive index liquids, series M, Cat. Num. 1815X
,” USD 70 at <https://www.cargille.com/refractive-index-liquids/> on May 30,
2022
. Refractive index specified at 589.3 nm and 25.0 °C.
48.
M. N.
Polyanskiy
, “
Refractive index of H2O (Water) at 24.0 °C - Daimon and Masumura (2007)
,” in Refractive Index Database; retrieved from <https://refractiveindex.info/?shelf=main&book=H2O&page=Daimon-24.0C> on May 30, 2022.
49.
Resonant Technologies GmbH
, “
Simulate Resonant SPR Curves with WinSpall
,” <http://www.res-tec.de/tutorial2-01.html>.
50.
The MathWorks, Inc.
, “
MATLAB for Students
,” <https://www.mathworks.com/products/matlab/student.html.
51.
J.
Peatross
and
M.
Ware
, Physics of Light and Optics, 2015 ed. (
2022
rev.); available at <https://optics.byu.edu>.
53.
E. U.
Donev
, “
Implementation of Eq. (12) for air and water
,” made with Mathematica; available at <https://www.wolframcloud.com/obj/ec6c22ca-a471-4b85-823f-5717120a21fe>.
54.
E. U.
Donev
, “
Implementation of Eq. (12) for air, water, saline solutions, ethanol, and isopropanol
,” made with Microsoft Excel; available at <https://www.compadre.org/AdvLabs/items/detail.cfm?ID=16105>.
55.
Presuming the input medium to be semi-infinite, Eq. (12) does not include reflection or refraction of the laser beam as it first enters the prism [Fig. 2(a)]. However, WinSpall does account for the prism's geometry and reflections from the entrance and exit faces, which explains why the WinSpall-calculated SPR curves for H2O in Fig. 4 have a lower overall reflectance than the curves calculated with Eq. (12) in Figs. 5(a) and 7.
56.
A.
Khattak
and
L.
Wei
, “
Fano resonance hybrid waveguide-coupled plasmonic sensor using transparent conductive oxide in the near-infrared range
,”
Photonics
9
,
189
(
2022
).
57.
P.
Pereyra
and
A.
Robledo-Martinez
, “
On the equivalence of the summation and transfer-matrix methods in wave propagation through multilayers of lossless and lossy media
,”
Eur. J. Phys.
30
,
393
401
(
2009
).
58.
American Optical Corp.
, “
AO Spencer Spectrometer
,” retrieved from <https://www2.humboldt.edu/scimus/Instruments/AO_Spectroscope/AO_SpectroMan.html> on May 20,
2022
.
59.
PASCO Scientific
, “
High-Sensitivity Light Sensor, Item Num. CI-6604
,” USD 175 at <https://www.pasco.com/products/sensors/science-workshop/ci-6604> on May 30,
2022
.
60.
PASCO Scientific
, “
550 Universal Interface, Item Num. UI-5001
,” USD 600 at <https://www.pasco.com/products/interfaces-and-dataloggers/ui-5001> on May 30,
2022
.
61.
The experimental curve in Fig. 4(a) is plotted with a horizontal offset of 0.76° relative to the original data. The mismatch between the measured and calculated SPR dips alerted the student to a slight misalignment in the optical setup, which they identified and corrected before proceeding with the sensing experiments.
62.
Thorlabs, Inc.
, “
Stabilized HeNe Laser, Item Num. HRS015B
,” USD 4760 at <https://www.thorlabs.com/thorproduct.cfm?partnumber=HRS015B> on May 30, 2022.
63.
We used the WinSpall software (Ref. 49) to perform a proof-of-principle fit of the Fresnel equations to one of our measured SPR curves; see Fig. 4(b). The six fitting parameters were the thicknesses and complex indices of refraction of the Ti and Au layers, with the following best-fit values: dTifit=2.82nm, dAufit=45.14nm, ñTifit=2.9611+1.9568i, and ñAufit=0.2735+3.4394i. However, determining the optical parameters of thin metal films from SPR measurements is a non-trivial, inverse-type problem (Refs. 82, 84, and 85) that was beyond the scope of the current work, so we did not pursue curve-fitting any further. The nominal Ti and Au parameters were used in all Fresnel calculations other than the fit in Fig. 4(b).
64.
Thorlabs, Inc.
, “
Integrating sphere (2″, 3 ports), item Num. 2P3
,” USD 1130 at <https://www.thorlabs.com/thorproduct.cfm?partnumber=2P3> on May 30,
2022
.
65.
D. T.
Debu
,
P. K.
Ghosh
,
D.
French
, and
J. B.
Herzog
, “
Surface plasmon damping effects due to Ti adhesion layer in individual gold nanodisks
,”
Opt. Mater. Express
7
,
73
84
(
2017
).
66.
B.
Lahiri
,
R.
Dylewicz
,
R. M.
De La Rue
, and
N. P.
Johnson
, “
Impact of titanium adhesion layers on the response of arrays of metallic split-ring resonators (SRRs)
,”
Opt. Express
18
,
11202
11208
(
2010
).
67.
P.-T.
Shen
,
Y.
Sivan
,
C.-W.
Lin
,
H.-L.
Liu
,
C.-W.
Chang
, and
S.-W.
Chu
, “
Temperature- and roughness-dependent permittivity of annealed/unannealed gold films
,”
Opt. Express
24
,
19254
19263
(
2016
).
68.
M. N.
Polyanskiy
, “
Refractive index (CH3)2CHOH (Isopropanol) - Sani and Dell'Oro (2016)
,” in Refractive Index Database; retrieved from <https://refractiveindex.info/?shelf=organic&book=propanol&page=Sani-formula> on May 30,
2022
.
69.
M. N.
Polyanskiy
, “
Refractive index C2H5OH (Ethanol) - Rheims et al., 1997
,” in Refractive Index Database; retrieved from <https://refractiveindex.info/?shelf=organic&book=ethanol&page=Rheims> on May,
2022
.
70.
D. R.
Lide
(editor),
CRC Handbook of Chemistry and Physics
, 83rd ed. (
CRC Press
,
Florida
,
2002
).
71.
E. M.
Yeatman
, “
Resolution and sensitivity in surface plasmon microscopy and sensing
,”
Biosens. Bioelectron.
11
,
635
649
(
1996
).
72.
B.
Ran
and
S. G.
Lipson
, “
Comparison between sensitivities of phase and intensity detection in surface plasmon resonance
,”
Opt. Express
14
,
5641
5650
(
2006
).
73.
G. G.
Nenninger
,
M.
Piliarik
, and
J.
Homola
, “
Data analysis for optical sensors based on spectroscopy of surface plasmons
,”
Meas. Sci. Technol.
13
,
2038
2046
(
2002
).
74.
J. T.
Hastings
, “
Optimizing surface-plasmon resonance sensors for limit of detection based on a Cramer-Rao bound
,”
IEEE Sens. J.
8
,
170
175
(
2008
).
75.
C.-T.
Li
,
T.-J.
Yen
, and
H. f
Chen
, “
A generalized model of maximizing the sensitivity in intensity-interrogation surface plasmon resonance biosensors
,”
Opt. Express
17
,
20771
20776
(
2009
).
76.
COMSOL, Inc.
, COMSOL Multiphysics®, <https://www.comsol.com>.
77.
A. V.
Lavrinenko
,
J.
Lægsgaard
,
F.
Schmidt
,
N.
Gregersen
, and
T.
Søndergaard
,
Numerical Methods in Photonics
(
CRC Press
,
Florida
,
2014
).
78.
T.
Treebupachatsakul
,
S.
Shinnakerdchoke
, and
S.
Pechprasarn
, “
Analysis of effects of surface roughness on sensing performance of surface plasmon resonance detection for refractive index sensing application
,”
Sensors
21
,
6164
(
2021
).
79.
A.
Philip
and
A. R.
Kumar
, “
The performance enhancement of surface plasmon resonance optical sensors using nanomaterials: A review
,”
Coord. Chem. Rev.
458
,
214424
(
2022
).
80.
W. L.
Barnes
, “
Comparing experiment and theory in plasmonics
,”
J. Opt. A: Pure Appl. Opt.
11
,
114002
(
2009
).
81.
D.
Barchiesi
, “
A classroom theory of the surface plasmon polariton
,”
Eur. J. Phys.
33
,
1345
1357
(
2012
).
82.
H. E.
de Bruijn
,
B. S. F.
Altenburg
,
R. P. H.
Kooyman
, and
J.
Greve
, “
Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance
,”
Opt. Commun.
82
,
425
432
(
1991
).
83.
J.-J.
Chyou
,
C.-S.
Chu
,
F.-C.
Chien
,
C.-Y.
Lin
,
T.-L.
Yeh
,
R. C.
Hsu
, and
S.-J.
Chen
, “
Precise determination of the dielectric constant and thickness of a nanolayer by use of surface plasmon resonance sensing and multiexperiment linear data analysis
,”
Appl. Opt.
45
,
6038
6044
(
2006
).
84.
J.
Salvi
and
D.
Barchiesi
, “
Measurement of thicknesses and optical properties of thin films from surface plasmon resonance (SPR)
,”
Appl. Phys. A
115
,
245
255
(
2014
).
85.
L.
Tao
,
S.
Deng
,
H.
Gao
,
H.
Lv
,
X.
Wen
, and
M.
Li
, “
Experimental investigation of the dielectric constants of thin noble metallic films using a surface plasmon resonance sensor
,”
Sensors
20
,
1505
(
2020
).
86.
N.
Andam
,
S.
Refki
,
H.
Ishitobi
,
Y.
Inouye
, and
Z.
Sekkat
, “
Optical characterization of ultra-thin films of azo-dye-doped polymers using ellipsometry and surface plasmon resonance spectroscopy
,”
Photonics
8
,
41
(
2021
).
87.
T. A.
Wilson
and
W. F.
Reed
, “
Low cost, interferometric differential refractometer
,”
Am. J. Phys.
61
,
1046
1048
(
1993
).
88.
C.-C.
Cheng
, “
Refractive index measurement by prism autocollimation
,”
Am. J. Phys.
82
,
214
216
(
2014
).
89.
H.
Jussila
,
T.
Albrow-Owen
,
H.
Yang
,
G.
Hu
,
S.
Aksimsek
,
N.
Granqvist
,
H.
Lipsanen
,
R. C. T.
Howe
,
Z.
Sun
, and
T.
Hasan
, “
New approach for thickness determination of solution-deposited graphene thin films
,”
ACS Omega
2
,
2630
2638
(
2017
).
90.
NanoSPR Devices
, “
Syringe Pump [with control software]
,” USD 300 at <https://nanospr.com/syringe-pump/> on May 27,
2022
.
91.
H.
Morgan
and
D. M.
Taylor
, “
A surface plasmon resonance immunosensor based on the streptavidin-biotin complex
,”
Biosens. Bioelectron.
7
,
405
410
(
1992
).
92.
Software Spectra, Inc.
, “
Animation of SPR curve with varying thickness of SiO2 overlayer
,” <https://www.sspectra.com/Animate7.html>.
93.
T.
Akimoto
,
S.
Sasaki
,
K.
Ikebukuro
, and
I.
Karube
, “
Refractive-index and thickness sensitivity in surface plasmon resonance spectroscopy
,”
Appl. Opt.
38
,
4058
4064
(
1999
).
94.
W. M. E. M. M.
Daniyal
,
Y. W.
Fen
,
J.
Abdullah
,
A. R.
Sadrolhosseini
, and
M. A.
Mahdi
, “
Design and optimization of surface plasmon resonance spectroscopy for optical constant characterization and potential sensing application: Theoretical and experimental approaches
,”
Photonics
8
,
361
(
2021
).
95.
D.
Barchiesi
,
N.
Lidgi-Guigui
, and
M. L.
de la Chapelle
, “
Functionalization layer influence on the sensitivity of surface plasmon resonance (SPR) biosensor
,”
Opt. Commun.
285
,
1619
1623
(
2012
).
96.
D.
Barchiesi
and
T.
Grosges
, “
Plasmonics for biosensors: Numerical methodology to evaluate the influence of uncertainties on the optical properties
,”
Mater. Today: Proc.
1
,
225
228
(
2014
).
97.
D.
Barchiesi
,
T.
Gharbi
,
D.
Cakir
,
E.
Anglaret
,
N.
Fréty
,
S.
Kessentini
, and
R.
Maâlej
, “
Performance of surface plasmon resonance sensors using copper/copper oxide films: Influence of thicknesses and optical properties
,”
Photonics
9
,
104
(
2022
).
98.
S.
Ekgasit
,
C.
Thammacharoen
, and
W.
Knoll
, “
Influence of the metal film thickness on the sensitivity of surface plasmon resonance biosensors
,”
Appl. Spectrosc.
59
,
661
667
(
2005
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.