The use of Green's functions is valuable when solving problems in electrodynamics, solid-state physics, and many-body physics. However, its role in quantum mechanics is often limited to the context of scattering by a central force. This work shows how Green's functions can be used in other examples in quantum mechanics courses. In particular, we introduce time-independent Green's functions and the Dyson equation to solve problems with an external potential. We calculate the reflection and transmission coefficients of scattering by a Dirac delta barrier and the energy levels and local density of states of the infinite square well potential.

1.
J. D.
Jackson
,
Classical Electrodynamics
(
John Wiley & Sons
,
New York
,
1999
).
2.
M.
Schwartz
and
S.
Melvin
,
Principles of Electrodynamics
(
McGraw-Hill
,
New York
,
1972
).
3.
D. J.
Griffiths
,
Introduction to Electrodynamics
(
Cambridge U.P.
,
Cambridge
,
2017
).
4.
N. H.
Asmar
,
Partial Differential Equations with Fourier Series and Boundary Value Problems (2nd Edition)
(
Pearson Prentice Hall
,
Hoboken, NJ
,
2005
).
5.
R.
Landau
,
Quantum Mechanics II
(
WILEY-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2004
).
6.
G.
Baym
,
Lectures on Quantum Mechanics
(
Addison-Wesley
,
Reading, MA
,
1993
).
7.
H. F.
Hameka
,
Quantum Mechanics: A Conceptual Approach
(
John Wiley & Sons
,
New York
,
2004
).
8.
G.
Rickayzen
,
Green's Functions and Condensed Matter
(
Academic Press
,
London
,
1980
).
9.
E. N.
Economou
,
Green's Function in Quantum Physics
(
Springer
,
Berlin, Germany
,
2006
).
10.
H.
Bruss
and
K.
Flensberg
,
Many-Body Quantum Theory in Condensed Matter Physics
(
Oxford U.P
.,
Oxford
,
2004
).
11.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many Particle Systems
(
Dover Publications, Inc
.,
New York
,
2003
).
12.
C.
Kittel
,
Quantum Theory of Solids
(
John Wiley & Sons
,
New York
,
1969
).
13.
A. M.
Zagoskin
,
Quantum Theory of Many- Body Systems
(
Springer
,
New York
,
1998
).
14.
N. H.
March
,
W. H.
Young
, and
S.
Sampanthar
,
The Many-Body Problem in Quantum Mechanics
(
Dover Publications, Inc
.,
New York
,
1995
).
15.
G. D.
Mahan
,
Many Particle Physics
(
Plenum Press
,
New York
,
1990
).
16.
S.
Raimes
,
Many–Electron Theory
(
North-Holland Publishing Company
,
Amsterdam
,
1972
).
17.
D. J.
Griffiths
and
D.
Schroeter
,
Introduction to Quantum Mechanics
(
Cambridge U.P
.,
Cambridge
,
2018
).
18.
J.
Sakurai
and
J.
Napolitano
,
Modern Quantum Mechanics
(
Cambridge U.P
.,
Cambridge
,
2017
).
19.
C.
Cohen-Tannoudji
,
B.
Diu
, and
F.
Laloë
,
Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications
(
Wiley
,
New York
,
1991
).
20.
L. I.
Schiff
,
Quantum Mechanics
(
McGraw-Hill
,
New York
,
1968
).
21.
C.
Cohen-Tannoudji
,
B.
Diu
, and
F.
Laloë
,
Quantum Mechanics, Volume 2: Basic Concepts, Tools, and Applications
(
Wiley
,
New York
,
1991
).
22.
G. Y.
Tsaur
and
J.
Wang
, “
A systematic approach for obtaining the Green functions of time-dependent Schrödinger equations by Fourier transform
,”
Eur. J. Phys.
37
,
045402
(
2016
).
23.
J. A.
Schmalz
,
G.
Schmalz
,
T. E.
Gureyev
, and
K. M.
Pavlov
, “
On the derivation of the Green's function for the Helmholtz equation using generalized functions
,”
Am. J. Phys.
78
,
181–186
(
2010
).
24.
J.
Shao
, “
Elementary derivation of the quantum propagator for the harmonic oscillator
,”
Am. J. Phys.
84
,
770–774
(
2016
).
25.
S.
Hassani
,
Mathematical Physics: A Modern Introduction to Its Foundations
(
Springer-Verlag New York, Inc
.,
New York
,
1999
).
26.
S. J. B. K. F.
Riley
and
M. P.
Hobson
,
Mathematical Methods for Physics and Engineering: A Comprehensive Guide
(
Cambridge U.P
.,
Cambridge
,
2006
).
27.
M.
Stone
and
P.
Goldbart
,
Mathematical for Physics
(
Pimander-Casaubon
,
Alexandria
,
2002
).
28.
E.
Butkov
,
Mathematical Physics
(
Addison-Wesley
,
Boston, MA
,
1968
).
29.
When it is calculated Green's function depending on tt as the Fourier transform of Ga/r(E), it is found that Ga/r(tt)exp(iE(tt)/±η(tt)))), so in order to have convergence for the advanced is necessary that t>t while that for the retarded t>t.
30.
In general, the transmission coefficient is defined as the ratio between the transmitted probability current density and the density of incident current. When the system is three-dimensional, one must consider only the current densities normal to the interfaces.
31.
F. W.
Byron
and
R. W.
Fuller
,
Mathematics of Classical and Quantum Physics
(
Dover Publications
,
New York
,
1992
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.