We investigate the spontaneous motion of a soap film in a conical geometry connected to a long tube and show how it can be used to measure the dynamic viscosity of air. In contrast to other techniques that are complicated to implement and require expensive and sophisticated equipment, this measurement method relies only on soapy water and three everyday life objects: a smartphone, a funnel, and a hose. More precisely, to determine the viscosity of air, we use a smartphone to record the spontaneous motion of a soap film placed in a funnel when the motion of the film is quasistatic and the flow of air escaping the geometry is viscously dominated. This simple experiment should be of value to undergraduate physics students in learning about effects of both fluid viscosity and surface tension (another fluid property which they could also measure with a smartphone; Goy et al., Phys. Teach. 55, 498–499 (2017)), and the usefulness of reasonable approximations in physics.

1.
N.-A.
Goy
,
Z.
Denis
,
M.
Lavaud
,
A.
Grolleau
,
N.
Dufour
,
A.
Deblais
, and
U.
Delabre
, “
Surface tension measurements with a smartphone
,”
Phys. Teach.
55
,
498
499
(
2017
).
2.
P. G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer
,
New York
,
2004
).
3.
L.
Salkin
,
A.
Schmit
,
P.
Panizza
, and
L.
Courbin
, “
Generating soap bubbles by blowing on soap films
,”
Phys. Rev. Lett.
116
,
077801
(
2016
).
4.
R. M.
Digilov
and
M.
Reiner
, “
Weight-controlled capillary viscometer
,”
Am. J. Phys.
73
(
11
),
1020
1022
(
2005
).
5.
Y.
Shimokawa
,
Y.
Matsuura
,
T.
Hirano
, and
K.
Sakai
, “
Gas viscosity measurement with diamagnetic-levitation viscometer based on electromagnetically spinning system
,”
Rev. Sci. Instrum.
87
,
125105
(
2016
).
6.
M.
Clerget
,
A.
Delvert
,
L.
Courbin
, and
P.
Panizza
, “
Different scenarios of shrinking surface soap bubbles
,”
Am. J. Phys.
89
(
3
),
244
252
(
2021
).
7.
For a short review on the pressure difference across a fluid interface (Laplace pressure), see for instance
F.
Behroozi
and
P. S.
Behroozi
, “
Determination of surface tension from the measurement of internal pressure of mini soap bubbles
,”
Am. J. Phys.
79
(
11
),
1089
1093
(
2011
).
8.
F. D.
Dos Santos
and
T.
Ondarçuhu
, “
Free-running droplets
,”
Phys. Rev. Lett.
75
,
2972
2975
(
1995
).
9.
Y.
Sumino
,
N.
Magome
,
T.
Hamada
, and
K.
Yoshikawa
, “
Self-running droplet: Emergence of regular motion from nonequilibrium noise
,”
Phys. Rev. Lett.
94
,
068301
(
2005
).
10.
H.
Linke
,
B. J.
Alemán
,
L. D.
Melling
,
M. J.
Taormina
,
M. J.
Francis
,
C. C.
Dow-Hygelund
,
V.
Narayanan
,
R. P.
Taylor
, and
A.
Stout
, “
Self-propelled Leidenfrost droplets
,”
Phys. Rev. Lett.
96
,
154502
154504
(
2006
).
11.
M. K.
Chaudhury
and
G. M.
Whitesides
, “
How to make water run uphill
,”
Science
256
,
1539
1541
(
1992
).
12.
E.
Lorenceau
and
D.
Quéré
, “
Drops on a conical wire
,”
J. Fluid Mech.
510
,
29
45
(
2004
).
13.
M.
Reyssat
,
L.
Courbin
,
E.
Reyssat
, and
H. A.
Stone
, “
Imbibition in geometries with axial variations
,”
J. Fluid Mech.
615
,
335
344
(
2008
).
14.
P.
Renvoisé
,
J. W. M.
Bush
,
M.
Prakash
, and
D.
Quéré
, “
Drop propulsion in tapered tubes
,”
Europhys. Lett.
86
,
64003
64005
(
2009
).
15.
E.
Reyssat
, “
Drops and bubbles in wedges
,”
J. Fluid Mech.
748
,
641
662
(
2014
).
16.
L.
Salkin
,
A.
Schmit
,
R.
David
,
A.
Delvert
,
E.
Gicquel
,
P.
Panizza
, and
L.
Courbin
, “
Interfacial bubbles formed by plunging thin liquid films in a pool
,”
Phys. Rev. Fluids
2
,
063604
(
2017
).
17.
L.
Salkin
,
A.
Schmit
,
P.
Panizza
, and
L.
Courbin
, “
Influence of boundary conditions on the existence and stability of minimal surfaces of revolution made of soap films
,”
Am. J. Phys.
82
(
9
),
839
847
(
2014
).
18.
In our experiment, a surface bubble is a hemispherical bubble sitting on the liquid surface. The formation mechanisms of these bubbles and the variations of their size with the parameters of the experiment will be published elsewhere.
19.
See <https://imagej.nih.gov/ij/> for “information about the free image processing software ImageJ”.
20.
See <http://www.gnuplot.info/> for “information about the free graphing software Gnuplot”.
21.
For a curved region of a fluid–fluid interface with typical length scale κ 1, comparing an estimate of the Laplace pressure γ κ to the hydrostatic pressure ρ g κ 1 gives the capillary length κ 1 = γ / ( ρ g ). For length scales larger than κ 1, gravity dominates. Otherwise, capillarity prevails over gravity.
22.
D. J.
Ferguson
and
S. J.
Cox
, “
The motion of a foam lamella traversing an idealised bi-conical pore with a rounded central region
,”
Colloids Surf., A
438
,
56
62
(
2013
).
23.
W. R.
Rossen
, “
Theory of mobilization pressure gradient of flowing foams in porous media
,”
J. Colloid Interface Sci.
136
,
1
16
(
1990
).
24.
E.
Guyon
,
J.-P.
Hulin
,
L.
Petit
, and
C. D.
Mitescu
,
Physical Hydrodynamics
, 2nd ed. (
Oxford U. P
.,
Oxford
,
2015
).
25.
H.
Bruus
,
Theoretical Microfluidics
(
Oxford U. P
.,
Oxford
,
2008
).
26.
S.
Gravelle
,
L.
Joly
,
F.
Detcheverry
,
C.
Ybert
,
C.
Cottin-Bizonne
, and
L.
Bocquet
, “
Optimizing water permeability through the hourglass shape of aquaporins
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
41
),
16367
16372
(
2013
).
27.
L.
Courbin
and
H. A.
Stone
, “
Your wetting day
,”
Phys. Today
60
(
2
),
84
85
(
2007
).
28.
T. E.
Faber
,
Fluid Dynamics for Physicists
(
Cambridge U. P
.,
Cambridge
,
1995
).
29.
D. P.
Jackson
and
S.
Sleyman
, “
Analysis of a deflating soap bubble
,”
Am. J. Phys.
78
,
990–994
(
2010
).
30.
L.
Sibaiya
, “
Time of collapse of a soap bubble
,”
Nature
149
,
527
(
1942
).
31.
Gören
Rämme
, “
Surface tension from deflating a soap bubble
,”
Phys. Educ.
32
,
191
194
(
1997
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.