Magnus gliders are spinning toys displaying spectacular looped trajectories when launched at large velocity. These trajectories originate from the large amplitude of the Magnus force due to translational velocities of a few meters per second combined with a backspin of a few hundred radians per seconds. In this article, we analyse the trajectories of Magnus gliders built from paper cups, easily reproducible in the laboratory. We highlight an analogy between the trajectory of the glider and the trajectory of charged particles in crossed electric and magnetic fields. The influence of the initial velocity and the initial backspin on the trajectories is analyzed using high speed imaging. The features of these trajectories are captured by a simple model of the evolution of the Magnus and drag forces as a function of the spin of the gliders. The experimental data and the modeling show that the type of trajectory—for instance, the occurrence of loops—depends mostly on the value and orientation of the initial translational velocity regardless of the value of the backspin, while the maximum height of the apex depends on both the initial translational velocity and initial backspin.

1.
G.
Magnus
, “
Ueber die Abweichung der Geschosse, und: Ueber eine auffallende Erscheinung bei rotirenden Körpern
,”
Ann. Phys.
164
,
1
29
(
1853
).
2.
W.
Johnson
, “
The Magnus effect – Early investigations and a question of priority
,”
Int. J. Mech. Sci.
28
,
859–872
(
1986
).
3.
C.
Clanet
, “
Sports ballistics
,”
Annu. Rev. Fluid Mech.
47
,
455–478
(
2015
).
4.
C.
Frohlich
, “
Resource letter PS-2: Physics of sports
,”
Am. J. Phys.
79
,
565–574
(
2011
).
5.
J. E.
Goff
,
J.
Kelley
,
C. M.
Hobson
,
K.
Seo
,
T.
Asai
, and
S. B.
Choppin
, “
Creating drag and lift curves from soccer trajectories
,”
Eur. J. Phys.
38
,
044003
(
2017
).
6.
J. E.
Goff
and
M. J.
Carré
, “
Trajectory analysis of a soccer ball
,”
Am. J. Phys.
77
,
1020–1027
(
2009
).
7.
A. M.
Nathan
, “
The effect of spin on the flight of a baseball
,”
Am. J. Phys.
76
,
119–124
(
2008
).
8.
J.
Thomson
, “
The dynamics of a golf ball
,”
Nature
85
,
251
257
(
1910
).
9.
A. R.
Penner
, “
The physics of golf
,”
Rep. Prog. Phys.
66
,
131–171
(
2002
).
10.
A.
Štěpánek
, “
The aerodynamics of tennis balls–the topspin lob
,”
Am. J. Phys.
56
,
138–142
(
1988
).
11.
M.
Peastrel
,
R.
Lynch
, and
A.
Armenti
, “
Terminal velocity of a shuttlecock in vertical fall
,”
Am. J. Phys.
48
,
511–513
(
1980
).
12.
C.
Cohen
,
B. D.
Texier
,
D.
Quéré
, and
C.
Clanet
, “
The physics of badminton
,”
New J. Phys.
17
,
063001
(
2015
).
13.
R. D.
Lorenz
,
Spinning Flight
(
Springer
,
New York, NY
,
2006
).
14.
G.
Dupeux
,
C.
Cohen
,
A. L.
Goff
,
D.
Quéré
, and
C.
Clanet
, “
Football curves
,”
J. Fluids Struct.
27
,
659–667
(
2011
).
15.
M.
McBeath
,
A.
Nathan
,
A.
Bahill
, and
D.
Baldwin
, “
Paradoxical pop-ups: Why are they difficult to catch?
,”
Am. J. Phys.
76
,
723–729
(
2008
).
16.
A. M.
Nathan
, “
Analysis of knuckleball trajectories
,”
Proc. Eng.
34
,
116–121
(
2012
).
17.
J. W. M.
Bush
, “
The aerodynamics of the beautiful game
,” in Sports Physics, edited by C. Clanet (
Les Editions de l'Ecole Polytechnique
,
2013
), pp.
171
192
.
18.
B.
Yeany
,
Physics of toys- cup flyers
(
2015
), <https://www.youtube.com/watch?v=05zF0sBwHe8>.
19.
A.
Flettner
, “
The Flettner rotorship
,”
J. Eng.
19
,
117
120
(
1925
).
20.
J.
Seifert
, “
A review of the Magnus effect in aeronautics
,”
Prog. Aerosp. Sci.
55
,
17–45
(
2012
).
21.
This is achieved using basic image processing from matlab software, including imfindcircles, whose output are the centers and radii of the disks detected in each image.
22.
W. M.
Swanson
, “
The Magnus effect: A summary of investigations to date
,”
J. Basic Eng.
83
,
461–470
(
1961
).
23.
C.
Badalamenti
, “
On the application of rotating cylinders to micro air vehicles
,” Ph.D thesis, City University of London, 2010; available at http://openaccess.city.ac.uk/8693/.
24.
D. J.
Tritton
,
Physical Fluid Dynamics
(
Springer
,
Dordrecht
,
1977
).
25.
F. F.
Chen
,
Introduction to Plasma Physics and Controlled Fusion
(
Springer
,
Cham
,
2016
).
26.
P. M.
Bellan
,
Fundamentals of Plasma Physics
(
Cambridge U. P
.,
Cambridge
,
2006
).
27.
M. A.
Lafay
, “
Sur l’inversion du phenomène de Magnus
,”
C. R. Hebd. Séances Acad. Sci.
151
,
867–868
(
1910
), available at https://gallica.bnf.fr/ark:/12148/cb343481087/date.
28.
M. A.
Lafay
, “Contribution expérimentale à l’aérodynamique du cylindre,” in Revue de Mécanique, edited by H. Dunod and E. Pinat (1912), pp. 417–425; available at https://gallica.bnf.fr/ark:/12148/bpt6k57019307.item.
29.
L.
Prandtl
, “
Application of the Magnus effect to the wind propulsion of ships
,”
Technical Report TM-367 37
(
1926
).
30.
A.
Busemann
, “
Messungen an rotierenden zylindern
,” in Ergebnisse Aerodyn. Versuchsanstalt Göttingen IV (
München Und
,
Berlin
,
1931
), pp.
101
105
31.
Using the ode45 matlab function.
32.
See supplementary material at https://www.scitation.org/doi/suppl/10.1119/10.0004981 for a video introducing the preparation of the Magnus glider launching and showing slow-motion for the arch, cusp and loop trajectories.

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.