We explore the forces and conservation laws that govern the motion of a hockey puck that slides without friction on a smooth, rotating, self-gravitating spheroid. The earth's oblate spheroidal shape (apart from small-scale surface features) is determined by balancing the gravitational forces that hold it together against the centrifugal forces that try to tear it apart. The earth achieves this shape when the apparent gravitational force on the puck, defined as the vector sum of the gravitational and centrifugal forces, is perpendicular to the earth's surface at every point on the surface. Thus, the earth's spheroidal deformations neutralize the centrifugal and gravitational forces on the puck, leaving only the Coriolis force to govern its motion. Motion on the spheroid therefore differs profoundly from motion on a rotating sphere, for which the centrifugal force plays a key role. Kinetic energy conservation reflects this difference: On a stably rotating spheroid, the kinetic energy is conserved in the rotating frame, whereas on a rotating sphere, it is conserved in the inertial frame. We derive these results and illustrate them using CorioVis software for visualizing the motion of a puck on the earth's spheroidal surface.

1.
A.
Persson
, “
The Coriolis effect: Four centuries of conflict between common sense and mathematics, Part I: A history to 1885
,”
Hist. Meteorol.
2
,
1
24
(
2005
), available at https://journal.meteohistory.org/index.php/hom/article/view/30.
2.
G. G.
Coriolis
, “
Mémoire sur les équations du mouvement relatif des systèmes de corps
,”
J. l'École Polytech.
15
,
142
154
(
1835
).
3.
A.
Persson
, “
How do we understand the Coriolis force?
,”
Bull. Am. Meteorol. Soc.
79
(
7
),
1373
1386
(
1998
).
4.
P. A.
Tyvand
and
K. B.
Haugen
, “
An impulsive bathtub vortex
,”
Phys. Fluids
17
(
6
),
062105
(
2005
).
5.
M. S.
Tiersten
and
H.
Soodak
, “
Dropped objects and other motions relative to the noninertial earth
,”
Am. J. Phys.
68
(
2
),
129
142
(
2000
).
6.
A.
Shakur
, “
Debunking Coriolis force myths
,”
Phys. Teach.
52
(
8
),
464
465
(
2014
).
7.
A. O.
Persson
, “
Hadley's principle: Understanding and misunderstanding the trade winds
,”
Hist. Meteorol.
3
,
17
42
(
2006
), available at http://meteohistory.org/2006historyofmeteorology3/2persson_hadley.pdf.
8.
M. S.
Tiersten
and
H.
Soodak
, “
Propagation of a Feynman error on real and inertial forces in rotating systems
,”
Am. J. Phys.
66
(
9
),
810
811
(
1998
).
9.
J.
Tessman
, “
Coriolis and consolation
,”
Am. J. Phys.
55
,
392
392
(
1987
).
10.
J. A.
Van den Akker
, “
Coriolis and consolation
,”
Am. J. Phys.
55
(
12
),
1063
(
1987
).
11.
National Geographic,
Coriolis effect demonstration
,” <https://youtu.be/mPsLanVS1Q8> (accessed on March 18, 2021) (
2021
).
12.
J. R.
Taylor
,
Classical Mechanics
(
University Science Books
,
Sausalito, CA
,
2005
), Chap. 9.
13.
A.
Persson
, “
Mathematics versus common sense: The problem of how to communicate dynamic meteorology
,”
Meteorol. Applicat.
17
(
2
),
236
242
(
2010
).
14.
A.
Persson
, “
Is the Coriolis effect an ‘optical illusion
,’?”
Q. J. R. Meteorol. Soc.
141
(
690
),
1957
1967
(
2015
).
15.
D. H.
McIntyre
, “
Using great circles to understand motion on a rotating sphere
,”
Am. J. Phys.
68
(
12
),
1097
1105
(
2000
).
16.
J. M.
Moran
,
Weather Studies: Introduction to Atmospheric Science
, 5th ed. (
American Meteorological Society
,
Boston, MA
,
2012
).
17.
National Geographic
, “
Coriolis effect
,” <https://www.nationalgeographic.org/encyclopedia/coriolis-effect/> (accessed on March 18, 2021) (
2021
).
18.
D.
Thomas
and
D. G.
Bowers
,
Introducing Oceanography
(
Dunedin Academic Press Ltd
.,
Edinburgh
,
2012
).
19.
O. E.
Thompson
, “
Coriolis deflection of a ballistic projectile
,”
Am. J. Phys.
40
(
10
),
1477
1483
(
1972
).
20.
N.
Brewster
,
T.
Kerr
,
N.
Adams
, and
J.
Smith
, “
P4_5 bending bullets
,”
J. Phys. Spec. Top.
10
(
1
),
1
2
(
2011
), available at https://journals.le.ac.uk/ojs1/index.php/pst/article/download/2053/1956.
21.
G.
Hadley
, “
Concerning the cause of the general trade winds
,”
Philos. Trans. R. Soc. London
39
,
58
62
(
1735
).
22.
C.
Abbe
,
The Mechanics of the Earth's Atmosphere: A Collection of Translations
(
Smithsonian Institution
,
Washington, DC
,
1910
), Vol.
51
(contains a translation of Hadley's 1735 article).
23.
J.
Renault
and
E.
Okal
, “
Investigating the physical nature of the Coriolis effects in the fixed frame
,”
Am. J. Phys.
45
(
7
),
631
633
(
1977
).
24.
L. J.
Battan
,
Fundamentals of Meteorology
, 2nd ed. (
Prentice-Hall
,
Englewood Cliffs, NJ
,
1984
).
25.
B. J.
Skinner
,
S. C.
Porter
, and
J.
Park
,
Dynamic Earth: An Introduction to Physical Geology
, 5th ed. (
John Wiley & Sons
,
Hoboken, NJ
,
2004
).
26.
Guinness World Records
, “
Fastest ice hockey shot
,” <https://www.guinnessworldrecords.com/world-records/fastest-ice-hockey-shot/> (accessed on March 18, 2021) (
2021
).
27.
Wikipedia
, “
Slapshot
,” <https://en.wikipedia.org/wiki/Slapshot> (accessed on March 18, 2021) (2021).
28.
J. M.
Edwards
and
B. F.
Edwards
, “
CorioVis coriolis visualization software
,” <https://edwardsjohnmartin.github.io/coriolis/> (accessed on March 18, 2021) (
2021
).
29.
D.
Stirling
, “
The eastward deflection of a falling object
,”
Am. J. Phys.
51
(
3
),
236
236
(
1983
).
30.
E.
Reddingius
,
“Comment on ‘The eastward deflection of a falling object
,’”
Am. J. Phys.
52
,
562
563
(
1984
).
31.
D.
Stirling
, “
Reply to ‘Comment on “The eastward deflection of a falling object
,” ’ ”
Am. J. Phys.
52
(
6
),
563
(
1984
).
32.
R.
Bauman
, “
A Coriolis paradox
,”
Phys. Teach.
21
(
7
),
461
462
(
1983
).
33.
J.
Boyd
and
P.
Raychowdhury
, “
Coriolis acceleration without vectors
,”
Am. J. Phys.
49
,
498
499
(
1981
).
34.
P.
Mohazzabi
, “
Free fall and angular momentum
,”
Am. J. Phys.
67
(
11
),
1017
1020
(
1999
).
35.
D. H.
McIntyre
, “
Coriolis force and noninertial effects animations
,” <http://physics.oregonstate.edu/~mcintyre/coriolis> (accessed on March 18, 2021) (
2021
).
36.
R.
Stacey
and
P.
Davis
,
Physics of the Earth
(
Cambridge U. P
.,
Cambridge
,
2008
), Chap. 6.
37.
D. R.
Durran
, “
Is the Coriolis force really responsible for the inertial oscillation?
,”
Bull. Am. Meteorol. Soc.
74
(
11
),
2179
2184
(
1993
).
38.
P.
Ripa
, “
Inertial' oscillations and the β-plane approximation(s)
,”
J. Phys. Oceanogr.
27
(
5
),
633
647
(
1997
).
39.
J. R.
Holton
and
G. J.
Hakim
,
An Introduction to Dynamic Meteorology
(
Academic Press
,
Cambridge, MA
,
2013
).
40.
A.
Wiin-Nielsen
, “
On inertial flow on the sphere: Technical report
,” <https://deepblue.lib.umich.edu/bitstream/handle/2027.42/8283/bad6752.0001.001.pdf?sequence=5&isAllowed=y> (accessed on March 18, 2021) (
1973
).
41.
J.
Angell
, “
Evidence for inertial oscillations along transosonde trajectories
,”
Mon. Weather Rev.
90
(
5
),
186
190
(
1962
).
42.
D. M.
Schultz
,
W. E.
Bracken
,
L. F.
Bosart
,
G. J.
Hakim
,
M. A.
Bedrick
,
M. J.
Dickinson
, and
K. R.
Tyle
, “
The 1993 superstorm cold surge: Frontal structure, gap flow, and tropical impact
,”
Mon. Weather Rev.
125
(
1
),
5
39
(
1997
).
43.
H.
Moritz
, “
Geodetic reference system 1980
,”
J. Geodesy.
74
(
1
),
128
133
(
2000
).
44.
Wikipedia
, “
World Geodetic System
,” <https://en.wikipedia.org/wiki/World_Geodetic_System#WGS84> (accessed on March 18, 2021) (
2021
).
45.
B.
Hofmann-Wellenhof
,
H.
Lichtenegger
, and
J.
Collins
,
Global Positioning System: Theory and Practice
, 3rd ed. (
Springer-Verlag
,
New York
,
1994
).
46.
The pertinent period of rotation is the sidereal period of rotation given in Eq.
(
2
), which is the time required for the earth to spin once on its axis relative to the fixed stars. This period differs slightly from the mean solar day of 24 h, the average time required for the earth to spin once on its axis relative to the sun. The mean solar day is longer than the sidereal period because of the earth's orbital motion around the sun, which is in the same direction as the earth's spin.
47.
A.
Motte
,
Translation of Newton's Principia (1687), Axioms or Laws of Motion
(
Daniel Adee
,
New York
,
1846
), Book III, Proposition XIX, Problem III, pp.
405
408
<https://archive.org/details/newtonspmathema00newtrich>.
48.
See supplementary material at https://www.scitation.org/doi/suppl/10.1119/10.0004801 with step-by-step details of mathematical derivations and numerical calculations in this manuscript.
49.
P.
Ripa
, “
Effects of the earth's curvature on the dynamics of isolated objects. Part I: The disk
,”
J. Phys. Oceanogr.
30
(
8
),
2072
2087
(
2000
).
50.
P.
Ripa
, “
Effects of the earth's curvature on the dynamics of isolated objects. Part II: The uniformly translating vortex
,”
J. Phys. Oceanogr.
30
(
10
),
2504
2514
(
2000
).
51.
N.
Paldor
and
P. D.
Killworth
, “
Inertial trajectories on a rotating earth
,”
J. Atmos. Sci.
45
(
24
),
4013
4019
(
1988
).
52.
N.
Paldor
and
A.
Sigalov
, “
The mechanics of inertial motion on the earth and on a rotating sphere
,”
Phys. D: Nonlinear Phenom.
160
,
29
53
(
2001
).
53.
J. J.
Early
, “
The forces of inertial oscillations
,”
Q. J. R. Meteorol. Soc.
138
(
668
),
1914
1922
(
2012
).
54.
B. F.
Edwards
and
J. M.
Edwards
, “
Geodetic model for teaching motion on the earth's spheroidal surface
,” Eur. J. Phys. (in press) (
2021
).
55.
M.
Ćuk
and
S. T.
Stewart
, “
Making the moon from a fast-spinning earth: A giant impact followed by resonant despinning
,”
Science
338
(
6110
),
1047
1052
(
2012
).
56.
W.
Peltier
, “
The history of the earth's rotation: Impacts of deep earth physics and surface climate variability
,” in
Treatise on Geophysics
, 2nd ed., edited by
Gerald
Schubert
(
Elsevier
,
Oxford
,
2015
), Chap. 9.09, pp.
221
279
.
57.
D.
Ragozzine
and
M. E.
Brown
, “
Orbits and masses of the satellites of the dwarf planet Haumea (2003 EL61)
,”
Astronom. J.
137
(
6
),
4766
4776
(
2009
).
58.
Wikipedia
, “
Dwarf planet,” <
https://en.wikipedia.org/wiki/Dwarf_planet> (accessed on March 18, 2021) (
2021
).
59.
D. L.
Rabinowitz
,
K.
Barkume
,
M. E.
Brown
,
H.
Roe
,
M.
Schwartz
,
S.
Tourtellotte
, and
C.
Trujillo
, “
Photometric observations constraining the size, shape, and albedo of 2003 EL61, a rapidly rotating, Pluto-sized object in the Kuiper belt
,”
Astrophys. J.
639
(
2
),
1238
1251
(
2006
).
60.
L.
Christensen
, “
IAU names fifth dwarf planet Haumea
,” <https://www.iau.org/news/pressreleases/detail/iau0807/> (accessed on March 18, 2021) (
2008
).
61.
J. L.
Ortiz
,
P.
Santos-Sanz
,
B.
Sicardy
,
G.
Benedetti-Rossi
,
D.
Bérard
,
N.
Morales
,
R.
Duffard
,
F.
Braga-Ribas
,
U.
Hopp
,
C.
Ries
et al, “
The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation
,”
Nature
550
(
7675
),
219
223
(
2017
).
62.
N.
Rambaux
,
D.
Baguet
,
F.
Chambat
, and
J. C.
Castillo-Rogez
, “
Equilibrium shapes of large trans-Neptunian objects
,”
Astrophys. J. Lett.
850
(
1
),
L9–L13
(
2017
).
63.
Video abstract of this manuscript, see https://doi.org/10.1119/10.0004801.
64.
Wikipedia
, “
Geographic coordinate conversion,” <
https://en.wikipedia.org/wiki/Geographic_coordinate_conversion> (accessed on March 18, 2021) (
2021
).
65.
Wikipedia
, “
Latitude
,” <https://en.wikipedia.org/wiki/Latitude> (accessed on March 18, 2021) (
2021
).
66.
Wikipedia
, “
Earth radius
,” <https://en.wikipedia.org/wiki/Earth_radius> (accessed on March 18, 2021) (
2021
).
67.
C.
MacLaurin
,
A Treatise of Fluxions: In Two Books
(
Ruddimans
,
Edinburgh
,
1742
), Vol.
1
.
68.
S.
Chandrasekhar
,
Ellipsoidal Figures of Equilibrium
(
Yale U. P
.,
London
,
1969
).
69.
R.
Lyttleton
,
The Stability of Rotating Liquid Masses
(
Cambridge U. P
.,
Cambridge
,
1953
).
70.
Wikipedia
, “
Maclaurin spheroid
,” <https://en.wikipedia.org/wiki/Maclaurin_spheroid> (accessed on March 18, 2021) (
2021
).
71.
E.
Poisson
and
C. M.
Will
,
Gravity: Newtonian, Post-Newtonian, Relativistic
(
Cambridge U. P
.,
Cambridge
,
2014
).
72.
S.
Runcorn
and
M.
Shrubsall
, “
The figure of the moon
,”
Phys. Earth Planet. Inter.
1
(
5
),
317
325
(
1968
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.