We discuss three approaches that have been used in obtaining the Born approximation for Coulomb scattering: the standard approach, making use of a convergence factor (“screening”), Oppenheimer's approach using cylindrical (instead of spherical) coordinates, and finally the Landau and Lifshitz approach. We simplify and clarify Oppenheimer's calculation, which has been rarely used because of its complications, and make the Landau and Lifshitz method rigorous. Although the latter method does require some background from the theory of generalized functions, it is nevertheless a very instructive and important technique deserving more exposure to instructors and theoretical physicists in general.

1.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics
, 3rd ed. (
Pergamon
,
New York
,
1977
).
2.
S.
Weinberg
,
Lectures on Quantum Mechanics
, 2nd ed. (
Cambridge U.P
.,
Cambridge
,
2015
).
3.
E. S.
Abers
,
Quantum Mechanics
(
Pearson Education, Inc
.,
New Jersey
,
2004
).
4.
R. E.
Kozack
, “
Born approximation and differential cross sections in nuclear physics
,”
Am. J. Phys.
59
,
74
79
(
1991
).
5.
E.
Rutherford
, “
The scattering of α and β particles by matter and the structure of the atom
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
21
,
669
688
(
1911
).
6.
L. D.
Landau
and
E. M.
Lifshitz
,
Mechanics
, 3rd ed. (
Butterworth-Heinemann
,
Oxford
,
1976
), Secs. 18 and 19.
7.
M.
Born
, “
Zur Quantenmechanik der Stossvorgänge
,”
Z. Phys.
37
,
863
867
(
1926
).
8.
M.
Born
, “
Quantenmechanik der Stossvorgänge
,”
Z. Phys.
38
,
803
827
(
1926
).
9.
G.
Wentzel
, “
Zwei Bemerkungen über die Zerstreuung korpuskularer Strahlen als Beugungserscheinung
,”
Z. Phys.
40
,
590
593
(
1926
).
10.
J. R.
Oppenheimer
, “
Bemerkung zur Zerstreuung der α-Teilchen
,”
Z. Phys.
43
,
413
415
(
1927
).
11.
L. D.
Landau
and
E. M.
Lifshitz
,
A Shorter Course of Theoretical Physics, Vol. 2: Quantum Mechanics
(
Pergamon
,
New York
,
1974
), Sec. 68.
12.
See supplementary material at https://www.scitation.org/doi/suppl/10.1119/10.0005453 for a brief presentation of the theory of generalized functions as used in Sec. IV.
13.
V.
de Alfaro
and
T.
Regge
,
Potential Scattering
(
North-Holland
,
Amsterdam
,
1965
).
14.
H.
Yukawa
, “
On the interaction of elementary particles. I
,”
Proc. Phys.-Math. Soc. Jpn.
17
,
48
57
(
1935
).
15.
M. D.
Semon
and
J. R.
Taylor
, “
Cross sections for screened potentials
,”
J. Math. Phys.
17
,
1366
1370
(
1976
).
16.
D. M.
Goodmanson
and
J. R.
Taylor
, “
Coulomb scattering as the limit of scattering off smoothly screened Coulomb potentials
,”
J. Math. Phys.
21
,
2202
2207
(
1980
).
17.
H. H.
Andersen
,
F.
Besenbacher
,
P.
Loftager
, and
W.
Möller
, “
Large-angle scattering of light ions in the weakly screened Rutherford region
,”
Phys. Rev. A
21
,
1891
1901
(
1980
).
18.
M.
Bozoian
,
K. M.
Hubbard
, and
M.
Nastasi
, “
Deviations from Rutherford-scattering cross sections
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
51
,
311
319
(
1990
).
19.
C.
Itzykson
and
J.-B.
Zuber
,
Quantum Field Theory
(
McGraw-Hill
,
New York
,
1980
), p.
319
.
20.
M.
Veltman
,
Diagrammatica
(
Cambridge U.P
.,
New York
,
1994
), p.
154
.
21.
T.
Lancaster
and
S. J.
Blundell
,
Quantum Field Theory for the Gifted Amateur
(
Oxford U.P.
,
Oxford
,
2014
), p.
361
.
22.
R. G.
Newton
,
Scattering Theory of Waves and Particles
(
Springer Science and Business Media LLC
,
New York
,
1982
).
23.
R. H.
Dalitz
, “
On higher Born approximations in potential scattering
,”
Proc. R. Soc. London, Ser. A
206
,
509
520
(
1951
).
24.
R. G.
Newton
, “
Radiative corrections to electron scattering
,”
Phys. Rev.
97
,
1162
1175
(
1955
).
25.
N. F.
Mott
, “
The solution of the wave equation for the scattering of particles by a Coulombian centre of force
,”
Proc. R. Soc. London, Ser. A
118
,
542
549
(
1928
).
26.
W.
Gordon
, “
Über den Stoss zweier Punktladungen nach der Wellenmechanik
,”
Z. Phys.
48
,
180
191
(
1928
).
27.
W.
Rudin
,
Real and Complex Analysis
, 3rd ed. (
McGraw-Hill
,
New York
,
1987
).
28.
W.
Magnus
,
F.
Oberhettinger
, and
R. P.
Soni
,
Formulas and Theorems for the Special Functions of Mathematical Physics
, 3rd ed. (
Springer-Verlag
,
Berlin
,
1966
), pp.
85
91
.
29.
Wolfram Research, Inc.,
Mathematica, Version 12.1
(
Wolfram Research, Inc
.,
Champaign, IL
,
2020
).
30.
J. R.
Taylor
,
Scattering Theory: The Quantum Theory of Nonrelativistic Collisions
(
John Wiley & Sons
,
New York
,
1972
).
31.
R.
Omnès
and
M.
Froissart
,
Mandelstam Theory and Regge Poles
(
Benjamin, Inc
.,
New York
,
1963
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.