We use coherence theory to explain why it is necessary to modify the conventional setup of a Michelson interferometer to obtain Haidinger rings with an extended source of white light. The modification consists of introducing a glass slide into one of the two arms of the interferometer. This insertion circumvents the drastic restriction imposed by the low temporal coherence of white light, which prevents the observation of interference rings with the conventional setup. In order to understand this restriction, we developed and implemented a criterion for observing interference fringes. The modified setup also makes it possible to perform a spectral interferometry experiment to analyze the output of the interferometer and determine the refractive index of the glass slide over the whole visible spectrum. The fit of measured data using Sellmeier's law gives the extrapolated value of the refractive index to the IR n IR = 1.5307 ± 0.0003 and the value of the characteristic wavelength λ 0 = ( 164.5 ± 0.4 ) nm of the oscillator responsible for the dispersion.

1.
Kjell J.
Gasvik
,
Optical Metrology
, 3rd ed. (
John Wiley & Sons
,
Chichester
,
2002
).
2.
Ariel
Lipson
,
Stephan G.
Lipson
, and
Henry
Lipson
,
Optical Physics
, 4th ed. (
Cambridge U. P
.,
New York
,
2011
).
3.
Guangyu
Fang
,
Li
Huang
,
Li
Xin
,
Haifa
Zhao
,
Lei
Huo
, and
Lili
Wu
, “
Geometric explanation of conic-section interference fringes in a Michelson interferometer
,”
Am. J. Phys.
81
(
9
),
670
675
(
2013
).
4.
Y.
El Azhari
,
O.
Azagrouze
,
F.
Martin
,
R.
Soummer
, and
C.
Aime
, “
Interferometric apodization of rectangular aperture–Laboratory experiments
,” in
Proceedings of the International Astronomical Union Colloquium No 200
(
2005
), pp.
445
448
.
5.
Francis A.
Jenkins
and
Harvey E.
White
,
Fundamentals of Optics
, 4th ed. (
McGraw-Hill
,
New York
,
2001
).
6.
J. E.
Grievenkamp
, “
Physical optics
,” in
Handbook of Optics
(
McGraw-Hill
,
New York
,
2009
), Vol.
1
.
7.
W. N.
Birchby
, “
White light interference fringes with a thick glass plate in one path
,”
Proc. Natl. Acad. Sci.
10
,
452
457
(
1924
).
8.
N. K.
Sethi
, “
Effect of a retarding plate on white light interferometer fringes
,”
Phys. Rev.
23
,
69
74
(
1924
).
9.
W. N.
Birchby
, “
White-light interference fringes with a thick glass plate in one path. Part II
,”
Proc. Natl. Acad. Sci.
13
,
216
221
(
1927
).
10.
P. A.
Young
and
D. E.
O'Connor
, “
White light fringes obtained with the Michelson interferometer
,”
Am. J. Phys.
38
,
1390
1395
(
1970
).
11.
H. H.
Zwick
and
G. G.
Shephered
, “
Defocusing a wide-angle Michelson interferometer
,”
Appl. Opt.
10
(
11
),
2569
2571
(
1971
).
12.
D. D.
Honijk
,
W. F.
Passchier
, and
M.
Mandel
, “
The determination of complex refractive indices with Fourier-Transform interferometry: I. Basic equations
,”
Physica
10
,
171
188
(
1973
).
13.
M. Y.
El Azhari
,
M.
Azizan
,
A.
Bennouna
,
A.
Outzourhit
,
E. L.
Ameziane
, and
M.
Brunel
, “
Preparation and characterization of CdTeO 3 thin films
,”
Thin Solid Films
366
,
82
87
(
2000
).
14.
Ch.
Dorrer
,
N.
Belabas
,
J.-P.
Likforman
, and
M.
Joffre
, “
Spectral resolution and sampling issues in Fourier-transform spectral interferometry
,”
J. Opt. Soc. Am. B
17
(
10
),
1795
1802
(
2000
).
15.
C.
Froehly
,
A.
Lacourt
, and
J. C.
Vienot
, “
Time impulse response and time frequency response of optical pupils: Experimental confirmations and applications
,”
Nouv. Rev. Opt.
4
,
183
196
(
1973
).
16.
A. P.
Kovács
,
K.
Varjú
,
K.
Osvay
, and
Zs.
Bor
, “
On the formation of white-light interference fringes
,”
Am. J. Phys.
66
(
11
),
985
989
(
1998
).
17.
Eugene
Hecht
,
Optics
, 4th ed. (
Addison Wesley
,
San Francisco
,
2002
).
18.
J.
Max Born
and
Emil
Wolf
,
Principles of Optics
, 6th ed. (
Cambridge U. P
.,
Cambridge
,
1998
).
19.
K. K.
Sharma
,
Optics: Principles and Applications
, 1st ed. (
Academic Press Elsevier
,
New York
,
2006
).
20.
Oleg
Marchenko
,
Sergei
Kazantsev
, and
Laurentius
Windholz
,
Demonstrational Optics, Part 2: Coherent and Statistical Optics
(
Springer
,
New York
,
2007
).
21.
C.
Raman
and
V.
Rajagopalan
, “
Haidinger's rings in curved plates
,”
J. Opt. Soc. Am.
29
,
413
416
(
1939
).
22.
Grant R.
Fowles
,
Introduction to Modern Optics
, 2nd ed. (
Dover Publications
,
New York
,
1989
).
23.
Wilhelm
Sellmeier
, “
Ueber die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rückwirkung auf die ersteren, besonders zur Erklärung der Dispersion und ihrer Anomalien
,”
Ann. Phys.
223
,
386
403
(
1872
).
24.
E.
Peck
, “
Sellmeier fits with linear regression; multiple data sets; dispersion formulas for helium
,”
Appl. Opt.
22
,
2906
2913
(
1983
).
25.
QtiPlot Online Manual
, <http://www.qtiplot.com/>.
26.
K.
Levenberg
, “
A method for the solution of certain problems in least squares
,”
Quart. Appl. Math.
2
,
164
168
(
1944
).
27.
D.
Marquardt
, “
An algorithm for least-squares estimation of nonlinear parameters
,”
SIAM J. Appl. Math.
11
,
431
441
(
1963
).
28.
Refractive index and transmittance of representative glasses
,” in
CRC Handbook of Chemistry and Physics
, 89th ed. (internet version
2009
), edited by
David R.
Lide
(
CRC Press/Taylor and Francis
,
Boca Raton, FL, 2009)
.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.