Traditional introductory physics laboratories typically focus on guided experimentation while neglecting essential aspects of the scientific practice including computational reasoning. While there is a broad consensus among physics faculty on the need to introduce undergraduate students to computation, its integration in physics curricula is far from adequate. In this article, we document the process of redesigning a calculus-based introductory physics laboratory course to incorporate computational modeling. We describe the instructional design and document students' and instructors' experiences and attitudes towards this new course. Despite some challenges, students identified numerical modeling as the most important and beneficial feature of the lab course. The computational tools allowed students to engage in more complex and realistic experiments than conventional laboratories, which triggered their interest and kept them engaged in the task. Results from instructor interview data corroborate the positive perceived aspects of student attitudes towards the course.

1.
S. J.
Gates
,
J.
Handelsman
,
G. P.
Lepage
, and
C.
Mirkin
, “
Engage to excel: Producing one million additional college graduates with degrees in science, technology, engineering, and mathematics
,” Technical Report, PCAST STEM Undergraduate Working Group, Office of the President,
Washington
(
2012
).
2.
R. R.
Greenwald
and
I. J.
Quitadamo
, “
A mind of their own: Using inquiry-based teaching to build critical thinking skills and intellectual engagement in an undergraduate neuroanatomy course
,”
J. Undergrad. Neurosci. Educ.
12
,
100
106
(
2014
).
3.
S.
Buchanan
,
M.
Harlan
,
C.
Bruce
, and
S.
Edwards
, “
Inquiry based learning models, information literacy, and student engagement: A literature review
,”
Sch. Lib. Worldwide
22
,
23
39
(
2016
).
4.
C.
Selby
and
J.
Woollard
, Computational Thinking: The Developing Definition (University of Southampton, Southampton, UK,
2013
), <http://eprints.so-ton.ac.uk/356481>.
5.
D.
Weintrop
,
E.
Beheshti
,
M.
Horn
,
K.
Orton
,
K.
Jona
,
L.
Trouille
, and
U.
Wilensky
, “
Defining computational thinking for mathematics and science classrooms
,”
J. Sci. Educ. Technol.
25
,
127
147
(
2016
).
6.
A.
Norman
, “
Rising above the gathering storm: Energizing and employing America for a brighter economic future
,” Technical Report,
National Academies Press
,
Washington, DC
(
2005
).
7.
R. M.
Serbanescu
,
P. J.
Kushner
, and
S.
Stanley
, “
Putting computation on a par with experiments and theory in the undergraduate physics curriculum
,”
Am. J. Phys.
79
(
9
),
919
924
(
2011
).
8.
R. H.
Landau
, “
Computational physics education; why, what and how
,”
Comput. Phys. Commun.
177
(
1–2
),
191
194
(
2007
).
9.
R.
Chabay
and
B.
Sherwood
, “
Computational physics in the introductory calculus-based course
,”
Am. J. Phys.
76
(
4
),
307
313
(
2008
).
10.
M. D.
Caballero
,
M. A.
Kohlmyer
, and
M. F.
Schatz
, “
Implementing and assessing computational modeling in introductory mechanics
,”
Phys. Rev. Phys. Educ. Res.
8
,
020106
(
2012
).
11.
N. D.
Finkelstein
,
W. K.
Adams
,
C. J.
Keller
,
K. K.
Perkins
, and
C. E.
Wieman
, “
High-tech tools for teaching physics: The physics education technology project
,”
J. Online High. Educ.
2
(
3
),
109
121
(
2006
), <http://jolt.merlot.org/vol2no3/finkelstein.pdf>.
12.
E. Behringer, J. Burciaga, D. Dietz, A. Gavrin, J. Kozminski, V. Migenes, and D. Schroeder
, “
AAPT recommendations for computational physics in the undergraduate physics curriculum
,” Technical Report, American Association of Physics Teachers (
2016
), <https://www.aapt.org/resources/upload/aapt_uctf_compphysreport_final_b.pdf>.
13.
M. D.
Caballero
,
J. B.
Burk
,
J. M.
Aiken
,
B. D.
Thoms
,
S. S.
Douglas
,
E. M.
Scanlon
, and
M. F.
Schatz
, “
Integrating numerical computation into the modeling instruction curriculum
,”
Phys. Teach.
52
,
38
42
(
2014
).
14.
R. G.
Fuller
, “
Numerical computations in us undergraduate physics courses
,”
Comput. Sci. Eng.
8
(
5
),
16
21
(
2006
).
15.
M. D.
Caballero
and
L.
Merner
, “
Prevalence and nature of computational instruction in undergraduate physics programs across the United States
,”
Phys. Rev. Phys. Educ. Res.
14
,
020129
(
2018
).
16.
N.
Chonacky
and
D.
Winch
, “
Integrating computation into the undergraduate curriculum: A vision and guidelines for future developments
,”
Am. J. Phys.
76
(
4
),
327
333
(
2008
).
17.
A.
Leary
,
P. W.
Irving
, and
M. D.
Caballero
, “
The difficulties associated with integrating computation into undergraduate physics
,” in
PERC Proceedings
,
Washington, DC
(
2018
).
18.
N. T.
Young
,
G.
Allen
,
J. M.
Aiken
,
R.
Henderson
, and
M. D.
Caballero
, “
Numerical computations in us undergraduate physics courses
,”
Phys. Rev. Phys. Educ. Res.
15
,
010114
(
2019
).
19.
G. C.
Weaver
,
W. D.
Burgess
,
A. L.
Childress
, and
L.
Slakey
,
Transforming Institutions: Undergraduate STEM Education for the 21st Century
(
Purdue U. P
.,
West Lafayette, IN
,
2016
).
20.
M. D.
Caballero
,
M. J.
Obsniuk
, and
P. W.
Irving
, “
Teaching computation in introductory physics using complex problems
,” e-print arXiv:1709.05493 (
2017
).
21.
R.
Beichner
,
R.
Chabay
, and
B.
Sherwood
, “
Labs for the matter & interactions curriculum
,”
Am. J. Phys.
78
,
456–460
(
2010
).
22.
D. C.
Bailey
,
J.
Harlow
, and
N.
Krasnopolskaia
, “
The advanced physics lab at the University of Toronto
,” in
Conference on Advanced Physics Labs
,
Washington, DC
(
2009
).
23.
C. W.
Misner
and
P. J.
Cooney
,
Spreadsheet Physics
(
Addison-Wesley
,
Boston, MA
,
1991
).
24.
A.
Bandura
,
An Agentic Perspective on Positive Psychology
(
Addison-Wesley
,
Boston, MA
,
2008
).
25.
D. H.
Schunk
, “
Self-efficacy and achievement behaviors
,”
Educ. Psychol. Rev.
1
,
173
208
(
1989
).
26.
T.
Salagaram
and
N.
Chetty
, “
The challenges of developing computational physics: The case of South Africa
,”
J. Phys.: Conf. Ser.
454
(
1
),
012075
(
2013
).
27.
G.
Wiggins
and
J.
McTighe
,
The Understanding by Design Guide to Creating High-Quality Units
(
ASCD
,
Arlington, VA
,
2011
).
28.
P.
Black
and
D.
Wiliam
, “
Developing the theory of formative assessment
,”
Educ. Assess. Eval. Acc.
21
,
5
31
(
2009
).
29.
C. J.
Burke
and
T. J.
Atherton
, “
Developing a project-based computational physics course grounded in expert practice
,”
Am. J. Phys.
85
,
301
310
(
2017
).
30.
P.
Heller
and
M.
Hollabaugh
, “
Teaching problem solving through cooperative grouping. Part 2: Designing problems and structuring groups
,”
Am. J. Phys.
60
,
637
644
(
1992
).
31.
D.
Doucette
,
R.
Clark
, and
C.
Singh
, “
Hermione and the secretary: How gendered task division in introductory physics labs can disrupt equitable learning
,”
Eur. J. Phys.
41
,
035702
(
2020
).
32.
V.
Braun
and
V.
Clarke
, “
Using thematic analysis in psychology
,”
Qual. Res.
3
,
77
101
(
2006
).
33.
M. H.
Dancy
and
C.
Henderson
, “
Beyond the individual instructor: Systemic constraints in the implementation of research' informed practices
,”
AIP Conf. Proc.
790
,
113–116
(
2005
).
34.
L.
Deslauriers
,
L. S.
McCarty
,
K.
Miller
,
K.
Callaghan
, and
G.
Kestin
, “
Measuring actual learning versus feeling of learning in response to being actively engaged in the classroom
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
19251
19257
(
2019
).
35.
A.
Bandura
, “
Self-efficacy: Toward a unifying theory of behavioral change
,”
Psychol. Rev.
84
,
191
215
(
1977
).
36.
D. H.
Schunk
, “
Effects of effort attributional feedback on children's perceived self-efficacy and achievement
,”
J. Educ. Psychol.
74
,
548
556
(
1989
).
37.
See supplementary material at https://www.scitation.org/doi/suppl/10.1119/10.0003899 for information regarding the instructional design process and structure, course material (lab manual, rubric, and example of Excel document for Project II, and instructional videos for Projects I and II), and the interview protocols (student and instructor).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.