An ellipse on a non-slip inclined plane can rock, roll, or jump. Below a threshold energy, it rocks about its static equilibrium configuration. Above this energy, it rolls, and, if it rolls, it will eventually jump off the incline after some number of rolls. It is shown that jumping can only occur in certain configurations of the ellipse.
REFERENCES
1.
E. I.
Kharlamova
, “
Rolling of a sphere on an inclined plane
,” J. Appl. Math. Mech.
22
(4
), 701
–708
(1958
).2.
Antonino
Carnevali
and
Russell
May
, “
Rolling motion of non-axisymmetric cylinders
,” Am. J. Phys.
73
(10
), 909
–913
(2005
).3.
Leaf
Turner
and
Ari M.
Turner
, “
Asymmetric rolling bodies and the phantom torque
,” Am. J. Phys.
78
(9
), 905
–908
(2010
).4.
Ben Yu-Kuang
Hu
, “
Rolling of asymmetric discs on an inclined plane
,” Euro. J. Phys.
32
(6
), L51
–L54
(2011
).5.
D.
Bideau
,
C.
Henrique
,
I.
Ippolito
,
L.
Samson
,
G.
Batrouni
,
A.
Aguirre
, and
A.
Calvo
, “
Dynamics of a ball rolling down a rough inclined surface
,” in Physics of Dry Granular Media
, edited by
H. J.
Herrmann
,
J. P.
Hovi
, and
S.
Luding
, NATO ASI Series E: Applied Sciences Vol.
350
(
Springer
,
Dordrecht
, 1998
), pp. 481
–498.
6.
Rod
Cross
, “
Precession of a spinning ball rolling down an inclined plane
,” Phys. Teach.
53
(4
), 217
–219
(2015
).7.
Rod
Cross
, “
Rolling to a stop down an inclined plane
,” Eur. J. Phys.
36
(6
), 065047
(2015
).8.
Rod
Cross
, “
Coulomb's law for rolling friction
,” Am. J. Phys.
84
(3
), 221
–230
(2016
).9.
R.
Cross
, “
Static friction on a ball rolling down an incline
,” Phys. Educ.
53
, 065014
–065017
(2018
).10.
R. W.
Gómez
,
J. J.
Hernández-Gómez
, and
V.
Marquina
, “
A jumping cylinder on an inclined plane
,” Eur. J. Phys.
33
(5
), 1359
–1365
(2012
).11.
Zixiang
Yan
,
Heming
Xia
,
Yueheng
Lan
, and
Jinghua
Xiao
, “
Variation of the friction coefficient for a cylinder rolling down an inclined board
,” Phys. Educ.
53
(1
), 015011
(2018
).12.
Z.
Zhen
,
L.
Caishan
, and
M.
Daolin
, “
Pure rotation of a prism on a ramp
,” R. Soc. A
470
(2169
), 20140007
–201440025
(2014
).13.
John E.
Littlewood
, Littlewood's Miscellany, edited by
Béla
Bollobás
, revised. ed. (
Cambridge U. P.
,
Cambridge
, 1986
).14.
T. F.
Tokieda
, “
The hopping hoop
,” Am. Math. Mon.
104
(2
), 1520
–1154
(1997
).15.
P.
Pritchett
, “
The hopping hoop revisited
,” Am. Math. Mon.
106
(7
), 609
–617
(1999
).16.
W. F. D.
Theron
and
N. M.
du Plessis
, “
The dynamics of a massless hoop
,” Am. J. Phys.
54
(3
), 354
–359
(2001
).17.
J. P.
Butler
, “
Hopping hoops don
't hop,” Am. Math. Mon.
106
, 565
–568
(1999
).18.
W. F. D.
Theron
, “
The rolling motion of an eccentrically loaded wheel
,” Am. J. Phys.
68
(9
), 812
–820
(2000
).19.
Andrew
Taylor
and
Mary
Fehrs
, “
The dynamics of an eccentrically loaded hoop
,” Am. J. Phys.
78
(5
), 496
–498
(2010
).20.
M. F.
Maritz
and
W. F. D.
Theron
, “
Experimental verification of the motion of a loaded hoop
,” Am. J. Phys.
80
(7
), 594
–598
(2012
).21.
Ross L.
Hatton
and
Howie
Choset
, “
Sidewinding on slopes
,” in Proceedings of IEEE International Conference on Robotics and Automation, Anchorage Convention District,
May 3–8 (2010
).22.
matlab, version 9.5.0.1049112 (R2018b) Update 3. Natick, Massachusetts: The MathWorks, Inc. (
2018
).23.
Maple 2018.2. Waterloo, Ontario: Maplesoft, a division of Waterloo Maple, Inc. (
2019
).© 2021 Author(s). Published under an exclusive license by American Association of Physics Teachers.
2021
Author(s)
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.