This paper theoretically studies a simple system of two identical linear springs connected symmetrically to a mass in a V-shaped configuration, with an additional adjustable external force applied to the mass. As this force is varied, under certain conditions the equilibrium position of the mass demonstrates strong dependence on the history of changes in the external force, exhibiting hysteresis. Mathematically, variations of the external force cause the system to undergo two saddle-node bifurcations at two differing critical points, leading separately to the creation and destruction of branches of stable equilibria. Analysis of the bifurcation diagram shows that the saddle-node bifurcations cause hysteresis in the system, and the behavior is summarized in a hysteresis graph.
Skip Nav Destination
Hysteresis in a simple V-shaped spring-mass system
Article navigation
July 2021
PAPERS|
July 01 2021
Hysteresis in a simple V-shaped spring-mass system
Christopher Ong
a)
Electronic mail: [email protected]; Permanent address: 106B Faber Drive, Singapore.
Am. J. Phys. 89, 663–665 (2021)
Article history
Received:
December 24 2020
Accepted:
January 27 2021
Connected Content
Citation
Christopher Ong; Hysteresis in a simple V-shaped spring-mass system. Am. J. Phys. 1 July 2021; 89 (7): 663–665. https://doi.org/10.1119/10.0003536
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Ergodic Lagrangian dynamics in a superhero universe
I. L. Tregillis, George R. R. Martin
A simple Minkowskian time-travel spacetime
John D. Norton
All objects and some questions
Charles H. Lineweaver, Vihan M. Patel
The most efficient thermodynamic cycle under general engine constraints
Christopher Ong, Shaun Quek
Kepler's Moon puzzle—A historical context for pinhole imaging
Thomas Quick, Johannes Grebe-Ellis
The surprising subtlety of electrostatic field lines
Kevin Zhou, Tomáš Brauner
Related Content
Effective Mass of an Oscillating Spring
The Physics Teacher (February 2007)
An improved calculation of the mass for the resonant spring pendulum
American Journal of Physics (June 2004)
Spring-Mass Correction in Uniform Circular Motion
American Journal of Physics (May 1964)
Finding the Effective Mass and Spring Constant of a Force Probe from Simple Harmonic Motion
Phys. Teach. (March 2016)