We have designed and experimentally studied several systems of standard coaxial cables with different impedances which mimic the operation of so-called photonic structures like coupled photonic crystal microcavities. Using elementary cells of half-meter long coaxial cables, we got resonances around 100 MHz, a range of frequencies that can be easily studied with standard teaching laboratory apparatus. Resonant mode frequency splitting has been obtained in the case of double and triple coupled cavities. Good agreement between experimental results and the transfer matrix model has been observed. The aim here is to demonstrate that a standard coaxial cable system is a very cheap and easy to implement structure to explain to undergraduate students complex phenomena that usually occur in the optical domain.

1.
K. J.
Vahala
, “
Optical microcavities
,”
Nature
424
,
839
846
(
2003
).
2.
A.
Chiasera
,
Y.
Dumeige
,
P.
Féron
,
M.
Ferrari
,
Y.
Jestin
,
G.
Nunzi Conti
,
S.
Pelli
,
S.
Soria
, and
G.
Righini
, “
Spherical whispering-gallery-mode microresonators
,”
Laser Photonics Rev.
4
,
457
482
(
2010
).
3.
J. S.
Foresi
,
P. R.
Villeneuve
,
J.
Ferrera
,
E. R.
Thoen
,
G.
Steinmeyer
,
S.
Fan
,
J. D.
Joannopoulos
,
L. C.
Kimerling
,
H. I.
Smith
, and
E. P.
Ippen
, “
Photonic-bandgap microcavities in optical waveguides
,”
Nature
390
,
143
145
(
1997
).
4.
E.
Centeno
and
D.
Felbacq
, “
Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity
,”
Phys. Rev. B
62
,
R7683
R7686
(
2000
).
5.
C.
Sauvan
,
P.
Lalanne
, and
J. P.
Hugonin
, “
Slow-wave effect and mode-profile matching in photonic crystal microcavities
,”
Phys. Rev. B
71
,
165118
(
2005
).
6.
E.
Kuramochi
,
M.
Notomi
,
S.
Mitsugi
,
A.
Shinya
,
T.
Tanabe
, and
T.
Watanabe
, “
Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect
,”
Appl. Phys. Lett.
88
,
041112
(
2006
).
7.
S.
Combrié
,
A. D.
Rossi
,
Q. V.
Tran
, and
H.
Benisty
, “
GaAs photonic crystal cavity with ultrahigh Q: Microwatt nonlinearity at 1.55 μm
,”
Opt. Lett.
33
,
1908
1910
(
2008
).
8.
E.
Yablonovitch
,
T. J.
Gmitter
,
R. D.
Meade
,
A. M.
Rappe
,
K. D.
Brommer
, and
J. D.
Joannopoulos
, “
Donor and acceptor modes in photonic band structure
,”
Phys. Rev. Lett.
67
,
3380
3383
(
1991
).
9.
S.
Fan
,
J. N.
Winn
,
A.
Devenyi
,
J. C.
Chen
,
R. D.
Meade
, and
J. D.
Joannopoulos
, “
Guided and defect modes in periodic dielectric waveguides
,”
J. Opt. Soc. Am. B
12
,
1267
1272
(
1995
).
10.
T. J.
Karle
,
Y. J.
Chai
,
C. N.
Morgan
,
I. H.
White
, and
T. F.
Krauss
, “
Observation of pulse compression in photonic crystal coupled cavity waveguides
,”
J. Lightwave Technol.
22
,
514
519
(
2004
).
11.
B.
Maes
,
M.
Soljačić
,
J. D.
Joannopoulos
,
P.
Bienstman
,
R.
Baets
,
S.-P.
Gorza
, and
M.
Haelterman
, “
Switching through symmetry breaking in coupled nonlinear micro-cavities
,”
Opt. Express
14
,
10678
10683
(
2006
).
12.
Q.
Xu
,
S.
Sandhu
,
M. L.
Povinelli
,
J.
Shakya
,
S.
Fan
, and
M.
Lipson
, “
Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency
,”
Phys. Rev. Lett.
96
,
123901
(
2006
).
13.
S. V.
Boriskina
, “
Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules
,”
Opt. Lett.
31
,
338
340
(
2006
).
14.
M.
Bayer
,
T.
Gutbrod
,
J. P.
Reithmaier
,
A.
Forchel
,
T. L.
Reinecke
,
P. A.
Knipp
,
A. A.
Dremin
, and
V. D.
Kulakovskii
, “
Optical modes in photonic molecules
,”
Phys. Rev. Lett.
81
,
2582
2585
(
1998
).
15.
S.
Haddadi
,
P.
Hamel
,
G.
Beaudoin
,
I.
Sagnes
,
C.
Sauvan
,
P.
Lalanne
,
J. A.
Levenson
, and
A. M.
Yacomotti
, “
Photonic molecules: Tailoring the coupling strength and sign
,”
Opt. Express
22
,
12359
12368
(
2014
).
16.
C.
Yang
,
X.
Jiang
,
Q.
Hua
,
S.
Hua
,
Y.
Chen
,
J.
Ma
, and
M.
Xiao
, “
Realization of controllable photonic molecule based on three ultrahigh-Q microtoroid cavities
,”
Laser Photonics Rev.
11
,
1600178
(
2017
).
17.
K. C.
Smith
,
Y.
Chen
,
A.
Majumdar
, and
D. J.
Masiello
, “
Active tuning of hybridized modes in a heterogeneous photonic molecule
,”
Phys. Rev. Appl.
13
,
044041
(
2020
).
18.
P.
Hamel
,
S.
Haddadi
,
F.
Raineri
,
P.
Monnier
,
G.
Beaudoin
,
I.
Sagnes
,
A.
Levenson
, and
A. M.
Yacomotti
, “
Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers
,”
Nat. Photonics
9
,
311
315
(
2015
).
19.
S. R. K.
Rodriguez
,
A.
Amo
,
I.
Sagnes
,
L.
Le Gratiet
,
E.
Galopin
,
A.
Lemaître
, and
J.
Bloch
, “
Interaction-induced hopping phase in driven-dissipative coupled photonic microcavities
,”
Nat. Commun.
7
,
11887
(
2016
).
20.
M.
Marconi
,
J.
Javaloyes
,
P.
Hamel
,
F.
Raineri
,
A.
Levenson
, and
A. M.
Yacomotti
, “
Far-from-equilibrium route to superthermal light in bimodal nanolasers
,”
Phys. Rev. X
8
,
011013
(
2018
).
21.
J.-B.
Ceppe
,
P.
Féron
,
M.
Mortier
, and
Y.
Dumeige
, “
Dynamical analysis of modal coupling in rare-earth whispering-gallery-mode microlasers
,”
Phys. Rev. Appl.
11
,
064028
(
2019
).
22.
X.
Xue
,
Y.
Xuan
,
P.-H.
Wang
,
Y.
Liu
,
D. E.
Leaird
,
M.
Qi
, and
A. M.
Weiner
, “
Normal-dispersion microcombs enabled by controllable mode interactions
,”
Laser Photonics Rev.
9
,
L23
L28
(
2015
).
23.
D. D.
Smith
,
H.
Chang
,
K. A.
Fuller
,
A. T.
Rosenberger
, and
R. W.
Boyd
, “
Coupled-resonator-induced transparency
,”
Phys. Rev. A
69
,
063804
(
2004
).
24.
L.
Maleki
,
A. B.
Matsko
,
A. A.
Savchenkov
, and
V. S.
Ilchenko
, “
Tunable delay line with interacting whispering-gallery-mode resonators
,”
Opt. Lett.
29
,
626
628
(
2004
).
25.
Y.
Dumeige
,
T. K. N.
Nguyên
,
L.
Ghişa
,
S.
Trebaol
, and
P.
Féron
, “
Measurement of the dispersion induced by a slow-light system based on coupled active-resonator-induced transparency
,”
Phys. Rev. A
78
,
013818
(
2008
).
26.
B.
Peng
,
S. K.
Özdemir
,
W.
Chen
,
F.
Nori
, and
L.
Yang
, “
What is and what is not electromagnetically induced transparency in whispering-gallery microcavities
,”
Nat. Commun.
5
,
5082
(
2014
).
27.
S.
Azzini
,
D.
Grassani
,
M.
Galli
,
D.
Gerace
,
M.
Patrini
,
M.
Liscidini
,
P.
Velha
, and
D.
Bajoni
, “
Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities
,”
Appl. Phys. Lett.
103
,
031117
(
2013
).
28.
X.
Zeng
,
C. M.
Gentry
, and
M. A.
Popović
, “
Four-wave mixing in silicon coupled-cavity resonators with port-selective, orthogonal supermode excitation
,”
Opt. Lett.
40
,
2120
2123
(
2015
).
29.
A.
Armaroli
,
P.
Feron
, and
Y.
Dumeige
, “
Stable integrated hyper-parametric oscillator based on coupled optical microcavities
,”
Opt. Lett.
40
,
5622
5625
(
2015
).
30.
A.
Yariv
,
Y.
Xu
,
R. K.
Lee
, and
A.
Scherer
, “
Coupled-resonator optical waveguide: A proposal and analysis
,”
Opt. Lett.
24
,
711
713
(
1999
).
31.
M.
Notomi
,
E.
Kuramochi
, and
T.
Tanabe
, “
Large-scale arrays of ultrahigh-Q coupled nanocavities
,”
Nat. Photonics
2
,
741
747
(
2008
).
32.
Y.
Dumeige
, “
Stopping and manipulating light using a short array of active microresonators
,”
Europhys. Lett.
86
,
14003
(
2009
).
33.
A.
Haché
and
L.
Poirier
, “
Anomalous dispersion and superluminal group velocity in a coaxial photonic crystal: Theory and experiment
,”
Phys. Rev. E
65
,
036608
(
2002
).
34.
A.
Haché
and
A.
Slimani
, “
A model coaxial photonic crystal for studying band structures, dispersion, field localization, and superluminal effects
,”
Am. J. Phys.
72
,
916
921
(
2004
).
35.
E. H.
El Boudouti
,
Y.
El Hassouani
,
B.
Djafari-Rouhani
, and
H.
Aynaou
, “
Two types of modes in finite size one-dimensional coaxial photonic crystals: General rules and experimental evidence
,”
Phys. Rev. E
76
,
026607
(
2007
).
36.
E. H. E.
Boudouti
,
Y. E.
Hassouani
,
H.
Aynaou
,
B.
Djafari-Rouhani
,
A.
Akjouj
, and
V. R.
Velasco
, “
Electromagnetic wave propagation in quasi-periodic photonic circuits
,”
J. Phys.
19
,
246217
(
2007
).
37.
M.
del Mar Sánchez-López
,
J. A.
Davis
, and
K.
Crabtree
, “
Coaxial cable analogs of multilayer dielectric optical coatings
,”
Am. J. Phys.
71
,
1314
1319
(
2003
).
38.
G. J.
Schneider
,
S.
Hanna
,
J. L.
Davis
, and
G. H.
Watson
, “
Defect modes in coaxial photonic crystals
,”
J. Appl. Phys.
90
,
2642
2649
(
2001
).
39.
J. M.
Bendickson
,
J. P.
Dowling
, and
M.
Scalora
, “
Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures
,”
Phys. Rev. E
53
,
4107
4121
(
1996
).
40.
N.
Hashizume
,
M.
Ohashi
,
T.
Kondo
, and
R.
Ito
, “
Optical harmonic generation in multilayered structures: A comprehensive analysis
,”
J. Opt. Soc. Am. B
12
,
1894
1904
(
1995
).
41.
R. D.
Pradhan
and
G. H.
Watson
, “
Impurity effects in coaxial-connector photonic crystals: A quasi-one-dimensional periodic system
,”
Phys. Rev. B
60
,
2410
2415
(
1999
).
42.
G. A.
Luna-Acosta
,
H.
Schanze
,
U.
Kuhl
, and
H.-J.
Stöckmann
, “
Impurity effects on the band structure of one-dimensional photonic crystals: Experiment and theory
,”
New J. Phys.
10
,
043005
(
2008
).
43.
H.
Haus
and
W.-P.
Huang
, “
Coupled-mode theory
,”
Proc. IEEE
79
,
1505
1518
(
1991
).
44.
Y.
Dumeige
,
S.
Trebaol
,
L.
Ghişa
,
T. K. N.
Nguyên
,
H.
Tavernier
, and
P.
Féron
, “
Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers
,”
J. Opt. Soc. Am. B
25
,
2073
2080
(
2008
).
45.
A.
Armitage
,
M. S.
Skolnick
,
V. N.
Astratov
,
D. M.
Whittaker
,
G.
Panzarini
,
L. C.
Andreani
,
T. A.
Fisher
,
J. S.
Roberts
,
A. V.
Kavokin
,
M. A.
Kaliteevski
, and
M. R.
Vladimirova
, “
Optically induced splitting of bright excitonic states in coupled quantum microcavities
,”
Phys. Rev. B
57
,
14877
14881
(
1998
).
46.
R. P.
Feynman
,
R. B.
Leighton
, and
M.
Sands
,
The Feynman Lectures on Physics
(
Hachette UK
,
London
,
2015
), Vol.
III
.
47.
A.
Rasoloniaina
,
V.
Huet
,
M.
Thual
,
S.
Balac
,
P.
Féron
, and
Y.
Dumeige
, “
Analysis of third-order nonlinearity effects in very high-Q WGM resonator cavity ringdown spectroscopy
,”
J. Opt. Soc. Am. B
32
,
370
378
(
2015
).
48.
See <www.radiall.com> for “
Radiall, Coaxial Cable Assemblies
.”
49.
G.
Hansen
,
O.
Harang
, and
R. J.
Armstrong
, “
Coupled oscillators: A laboratory experiment
,”
Am. J. Phys.
64
,
656
660
(
1996
).
50.
C. L.
Garrido Alzar
,
M. A. G.
Martinez
, and
P.
Nussenzveig
, “
Classical analog of electromagnetically induced transparency
,”
Am. J. Phys.
70
,
37
41
(
2002
).
51.
L.
Novotny
, “
Strong coupling, energy splitting, and level crossings: A classical perspective
,”
Am. J. Phys.
78
,
1199
1202
(
2010
).
52.
W.
Newman
,
A.
Skinner
, and
S. A.
Hilbert
, “
An acoustic demonstration of an avoided crossing
,”
Am. J. Phys.
85
,
844
849
(
2017
).
53.
H. A.
Haus
,
Waves and Fields in Optoelectronics
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1984
).
54.
Q.
Li
,
T.
Wang
,
Y.
Su
,
M.
Yan
, and
M.
Qiu
, “
Coupled mode theory analysis of mode-splitting in coupled cavity system
,”
Opt. Express
18
,
8367
8382
(
2010
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.