In the quasistatic limit, a time-varying magnetic field inside a conductor is governed by the diffusion equation. Despite the occurrence of this scenario in many popular physics demonstrations, the concept of magnetic diffusion appears not to have garnered much attention itself as a subject for teaching. We employ the model of a thin conducting tube in a time-varying axial field to introduce magnetic diffusion and connect it to the related phenomenon of inductive shielding. We describe a very simple apparatus utilizing a wide-band Hall-effect sensor to measure these effects with a variety of samples. Quantitative results for diffusion time constants and shielding cutoff frequencies are consistent with a single, sample-specific parameter given by the product of the tube radius, thickness, and electrical conductivity. The Laplace transform arises naturally in regard to the time and frequency domain solutions presented here, and the utility of the technique is highlighted in several places.

1.
D. J.
Griffiths
,
Introduction to Electrodynamics
, 4th ed. (
Pearson
,
Boston
,
2013
).
2.
G. L.
Pollock
and
D. R.
Stump
,
Electromagnetism
(
Addison Wesley
,
San Francisco
,
2002
).
3.
A.
Garg
,
Classical Electromagnetism in a Nutshell
(
Princeton U. P.
,
Princeton
,
2012
).
4.
W. M.
Saslow
, “
Maxwell's theory of eddy currents in thin conducting sheets, and applications to electromagnetic shielding and MAGLEV
,”
Am. J. Phys.
60
,
693
711
(
1992
).
5.
M. A.
Nurge
 et al, “
Drag and lift forces between a rotating conductive sphere and a cylindrical magnet
,”
Am. J. Phys.
86
,
443
452
(
2018
).
6.
M. H.
Partovi
and
E. J.
Morris
, “
Electrodynamics of a magnet moving through a conducting pipe
,”
Can. J. Phys.
84
,
253
271
(
2006
).
7.
B.
Irvine
 et al, “
Magnet traveling through a conducting pipe: A variation on the analytical approach
,”
Am. J. Phys.
82
,
273
279
(
2014
).
8.
S.
Fahy
 et al, “
Electromagnetic screening by metals
,”
Am. J. Phys.
56
,
989
992
(
1988
).
9.
J.
Íñiguez
 et al, “
Measurement of the electrical conductivity of metallic tubes by studying magnetic screening at low frequency
,”
Am. J. Phys.
73
,
206
210
(
2005
).
10.
J.
Íñiguez
 et al, “
Measurement of electrical conductivity in nonferromagnetic tubes and rods at low frequencies
,”
Am. J. Phys.
77
,
949
953
(
2009
).
11.
J.
Íñiguez
 et al, “
The electromagnetic field in conductive slabs and cylinders submitted to a harmonic longitudinal magnetic field
,”
Am. J. Phys.
77
,
1074
1081
(
2009
).
12.
C. P.
Bidinosti
 et al, “
The sphere in a uniform rf field—Revisited
,”
Concepts Magn. Resonance
31B
,
191
202
(
2007
).
13.
M. L.
Honke
and
C. P.
Bidinosti
, “
The metallic sphere in a uniform ac magnetic field: A simple and precise experiment for exploring eddy currents and non-destructive testing
,”
Am. J. Phys.
86
,
430
438
(
2018
).
14.
J. R.
Nagel
, “
Induced eddy currents in simple conductive geometries: mathematical formalism describes the excitation of electrical eddy currents in a time-varying magnetic field
,”
IEEE Antennas Propag. Mag.
60
(
1)
,
81
88
(
2018
).
See also
Correction
,”
IEEE Antennas Propag. Mag.
60
(
4)
,
83
(
2018
).
15.
P. J. H.
Tjossem
and
E. C.
Brost
, “
Optimizing Thomson's jumping ring
,”
Am. J. Phys.
79
,
353
358
(
2011
).
16.
C. L.
Ladera
and
G.
Donoso
, “
Unveiling the physics of the Thomson jumping ring
,”
Am. J. Phys.
83
,
341
348
(
2015
).
17.
R. W.
Latham
and
K. S. H.
Lee
, “
Theory of inductive shielding
,”
Can. J. Phys.
46
,
1745
1752
(
1968
).
18.
J. R.
Reitz
, “
Forces on moving magnets due to eddy currents
,”
J. Appl. Phys.
41
,
2067
2071
(
1970
).
19.
H. A.
Haus
and
J. R.
Melcher
,
Electromagnetic Fields and Energy
(
Prentice-Hall
,
Englewood Cliffs
,
1989
), Chap. 10.
20.
H. E.
Knoepfel
,
Magnetic Fields: A Comprehensive Theoretical Treatise for Practical Use
(
John Wiley & Sons
,
New York
,
2000
), Chap. 4.
21.
W. R.
Smythe
,
Static and Dynamic Electricity
, 2nd ed. (
McGraw-Hill
,
New York
,
1950
), Chap. XI.
22.
L. V.
King
, “
XXI. Electromagnetic shielding at radio frequencies
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
15
(
97
),
201
223
(
1933
).
23.
J. C.
Jaeger
, “
III. Magnetic screening by hollow circular cylinders
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
29
(
192
),
18
31
(
1940
).
24.
C. P.
Bean
 et al, “
Eddy-current method for measuring the resistivity of metals
,”
J. Appl. Phys.
30
,
1976
1980
(
1959
).
25.
M. A.
Weinstein
, “
Magnetic decay in a hollow circular cylinder
,”
J. Appl. Phys.
33
,
762
(
1962
).
26.
K.
Lee
and
G.
Bedrosian
, “
Diffusive electromagnetic penetration into metallic-enclosures
,”
IEEE Trans. Antennas Propag.
27
,
194
198
(
1979
).
27.
M. J.
Ramos
 et al, “
The phase angle method for electrical resistivity applied to the hollow circular cylinder geometry
,”
J. Appl. Phys.
67
,
1167
1169
(
1990
).
28.
C. P.
Bidinosti
and
M. E.
Hayden
, “
Selective passive shielding and the Faraday bracelet
,”
Appl. Phys. Lett.
93
,
174102
(
2008
).
29.
M. L.
Boas
,
Mathematical Methods in the Physical Sciences
, 3rd ed. (
John Wiley & Sons
,
Hoboken
,
2006
), Chap. 8.
30.
K. F.
Riley
,
M. P.
Hobson
, and
S. J.
Bence
,
Mathematical Methods for Physics and Engineering
, 3rd ed. (
Cambridge U. P.
,
Cambridge
,
2006
), Chap. 13.
31.
C. A.
Desoer
and
E. S.
Kuh
,
Basic Circuit Theory
(
Mcgraw-Hill
,
New York
,
1969
), Chap. 13.
32.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
, 7th ed. (
Elsevier
,
Amsterdam
,
2007
), Chap. 17.
33.
K.
Riess
, “
Some applications of the Laplace transform
,”
Am. J. Phys.
15
,
45
48
(
1947
).
34.
C. L.
Bohn
and
R. W.
Flynn
, “
Real variable inversion of Laplace transforms: An application in plasma physics
,”
Am. J. Phys.
46
,
1250
1254
(
1978
).
35.
See datasheet and application notes—in particular, Current Sensing with the CSA-1V—at the distributor website <https://gmw.com/product/csa-1vg-so/>. The CSA-1V comes in a standard, surface mount SOIC-8 package, for which small breakout PCBs can be purchased from many vendors.
36.
C. P.
Bidinosti
 et al, “
A simple wide-band gradiometer for operation in very low background field
,”
Concepts Magn. Resonance
37B
,
1
6
(
2010
).
37.
J. R.
Taylor
,
An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
, 2nd ed. (
University Science Books
,
Sausalito
,
1996
), Chaps. 3 and 4.
38.
See supplementary material at https://www.scitation.org/doi/suppl/10.1119/10.0003508 for a more extensive list of papers on the interaction of magnetic fields and conducting materials.
39.
J. L.
Kirschvink
, “
Uniform magnetic fields and double-wrapped coil systems: Improved techniques for the design of bioelectromagnetic experiments
,”
Bioelectromagnetics
13
,
401
411
(
1992
).
40.
S. R.
Muniz
and
V. S.
Bagnato
, “
Analysis of off-axis solenoid fields using the magnetic scalar potential: An application to a Zeeman-slower for cold atoms
,”
Am. J. Phys.
83
,
513
517
(
2015
).

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.