In this work, we present in detail, in an accessible manner for undergraduate and graduate physics students, the model of spontaneous curvature, due to Helfrich, that quantitatively explains why the red blood cells in their natural state adopt a biconcave shape. The main hypothesis is that the equilibrium cell shape satisfies the principle of minimum free energy. Therefore, in the model, an expression for the membrane free energy is postulated based on the Helfrich theory. In that approximation, the membrane is modelled as a two-dimensional surface and the energy is written as a function of the surface principal curvatures and three parameters, including the spontaneous curvature, c0, which is associated with the chemical composition of the membrane. The negative values for c0 induce invaginations in the cell membrane. The model predicts the discocyte-spherocyte transition for the red blood cell. In the article, the concepts involved in the theory are developed in detail, and an algorithm that allows obtaining the contour of the cell is presented in detail as supplementary material.

1.
P. D.
Blood
,
R. D.
Swanson
, and
G. A.
Voth
, “
Factors influencing local membrane curvature induction by N-BAR domains as revealed by molecular dynamics simulations
,”
Biophys. J.
95
(
4
),
1866
1876
(
2008
).
2.
J.
Agudo-Canalejo
and
R.
Lipowsky
, “
Adhesive nanoparticles as local probes of membrane Curvature
,”
Nano Lett.
15
(
10
),
7168
7173
(
2015
).
3.
Soft Matter Vol. 4: Lipid Bilayers and Red Blood Cells
, 1st ed., edited by
G.
Gompper
and
M.
Schick
(
WILEY-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2008
).
4.
H. J.
Deuling
and
W.
Helfrich
, “
The curvature elasticity of fluid membranes: A catalogue of vesicle shapes
,”
J. Phys. France
37
,
1335
1345
(
1976
).
5.
H. J.
Deuling
and
W.
Helfrich
, “
Red blood cell shapes as explained on the basis of curvature elasticity
,”
Biophys. J.
16
(
8
),
861
868
(
1976
).
6.
W.
Helfrich
and
H. J.
Deuling
, “
Some theoretical shapes of red blood cells
,”
J. Phys. Colloques
36
,
C1-327
C1-329
(
1975
).
7.
N.
Gov
,
A. G.
Zilman
, and
S.
Safran
, “
Cytoskeleton confinement and tension of red blood cell membranes
,”
Phys. Rev. Lett.
90
(
22
),
228101
(
2003
).
8.
C.
Dubus
and
J.-B.
Fournier
, “
A Gaussian model for the membrane of red blood cells with cytoskeletal defects
,”
Europhys. Lett.
75
,
181
187
(
2006
).
9.
Y.
Park
,
C. A.
Best
,
T.
Auth
,
N. S.
Govf
,
S. A.
Safran
,
G.
Popescu
,
S.
Suresh
, and
M. S.
Feld
, “
Metabolic remodeling of the human red blood cell membrane
,”
Proc. Natl. Acad. Sci. U. S. A.
107
(
4
),
1289
1294
(
2010
).
10.
K.
Sinha
and
M. D.
Graham
, “
Dynamics of a single red blood cell in simple shear flow
,”
Phys. Rev. E
92
(
4
),
042710
(
2015
).
11.
S.
Mendez
and
M.
Abkarian
, “
In-plane elasticity controls the full dynamics of red blood cells in shear flow
,”
Phys. Rev. Fluids
3
(
10
),
101101
(
2018
).
12.
M.
Hoore
,
F.
Yaya
,
T.
Podgorski
,
C.
Wagner
,
G.
Gompper
, and
D. A.
Fedosov
, “
Effect of spectrin network elasticity on the shapes of erythrocyte doublets
,”
Soft Matter
14
(
30
),
6278
6289
(
2018
).
13.
P. B.
Canham
, “
The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell
,”
J. Theor. Biol.
26
(
1
),
61
76
(
1970
).
14.
W.
Helfrich
, “
Elastic properties of lipid bilayers: Theory and possible experiments
,”
Z. Naturforsch.
28
,
693
703
(
1973
).
15.
Z.
Ou-Yang
and
W.
Helfrich
, “
Instability and deformation of a spherical vesicle by pressure
,”
Phys. Rev. Lett.
59
(
21
),
2486
2488
(
1987
).
16.
U.
Seifert
, “
Configurations of fluid membranes and vesicles
,”
Adv. Phys.
46
(
1
),
13
137
(
1997
).
17.
S.
Svetina
and
B.
Žekš
, “
Membrane bending energy and shape determination of phospholipid vesicles and red blood cells
,”
Eur. Biophys. J.
17
(
2
),
101
111
(
1989
).
18.
U.
Seifert
,
K.
Berndl
, and
R.
Lipowsky
, “
Shape transformations of vesicles: Phase diagram for spontaneous-curvature and bilayer-coupling models
,”
Phys. Rev. A
44
(
2
),
1182
1202
(
1991
).
19.
D.
Kuzman
,
S.
Svetina
,
R. E.
Waugh
, and
B.
Žekš
, “
Elastic properties of the red blood cell membrane that determine echinocyte deformability
,”
Eur. Biophys. J.
33
(
1
),
1
15
(
2004
).
20.
Z.
Tu
and
Z.
Ou-Yang
, “
Recent theoretical advances in elasticity of membranes following Helfrich's spontaneous curvature model
,”
Adv. Colloid Interface Sci.
208
,
66
75
(
2014
).
21.
M.
Deserno
, “
Fluid lipid membranes: From differential geometry to curvature stresses
,”
Chem. Phys. Lipids
185
,
11
45
(
2015
).
22.
S.
Svetina
,
T. S.
Kebe
, and
B.
Bozic
, “
A model of piezo1-based regulation of red blood cell Volume
,”
Biophys. J.
116
(
1
),
151
164
(
2019
).
23.
B.
Coste
,
J.
Mathur
,
M.
Schmidt
,
T. J.
Earley
,
S.
Ranade
,
M. J.
Petrus
,
A. E.
Dubin
, and
A.
Patapoutian
, “
Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels
,”
Science
330
(
6000
),
55
60
(
2010
).
24.
R.
Skalak
and
P.
Branemark
, “
Deformation of red blood cells in capillaries
,”
Science
164
(
3880
),
717
719
(
1969
).
25.
J.
Treleaven
,
A.
Gennery
,
J.
Marsh
,
D.
Norfolk
,
L.
Page
,
A.
Parker
,
F.
Saran
,
J.
Thurston
, and
D.
Webb
, “
Guidelines on the use of irradiated blood components prepared by the British Committee for Standards in Haematology blood transfusion task force
,”
Br. J. Haematol.
152
(
1
),
35
51
(
2011
).
26.
T.
Walski
,
L.
Chludzinska
,
M.
Komorowska
, and
W.
Witkiewicz
, “
Individual osmotic fragility distribution: A new parameter for determination of the osmotic properties of human red blood cells
,”
BioMed Res. Int.
2014
(
1
),
1
6
.
27.
E. K.
Kozlova
,
V. A.
Sergunova
,
E. A.
Krasavin
,
A. V.
Boreyko
,
A. V.
Zavialova
,
A. P.
Kozlov
, and
A. M.
Chernysh
, “
Local defects in the nanostructure of the membrane of erythrocytes upon ionizing radiation of blood
,”
Phys. Part. Nucl. Lett.
13
(
1
),
140
148
(
2016
).
28.
K.
AlZahrani
and
H. A.
Al-Sewaidan
, “
Nanostructural changes in the cell membrane of gamma-irradiated red blood cells
,”
Indian J. Hematol. Blood Transfus.
33
(
1
),
109
115
(
2017
).
29.
M. A.
Acosta-Elías
,
A. J.
Burgara-Estrella
,
J. A.
Sarabia-Sainz
,
E.
Silva-Campa
,
A.
Angulo-Molina
,
K. J.
Santacruz-Gómez
,
B.
Castaneda
,
D.
Soto-Puebla
,
A. I.
Ledesma-Osuna
,
R.
Melendrez-Amavizca
, and
M.
Pedroza-Montero
, “
Nano alterations of membrane structure on both γ-irradiated and stored human erythrocytes
,”
Int. J. Radiat. Biol.
93
(
12
),
1306
1311
(
2017
).
30.
E. N.
Miranda
and
D. S.
Bertoldi
, “
Thermostatistics of small systems: Exact results in the microcanonical formalism
,”
Eur. J. Phys.
34
(
4
),
1075
1087
(
2013
).
31.
E.
Langbeheim
,
S.
Livne
,
S. A.
Safran
, and
E.
Yerushalmi
, “
Introductory physics going soft
,”
Am. J. Phys.
80
(
1
),
51
60
(
2012
).
32.
Y.
Klapper
,
K.
Nienhaus
,
C.
Röcker
, and
G.
Ulrich Nienhaus
, “
Lipid membranes and single ion channel recording for the advanced physics laboratory
,”
Am. J. Phys.
82
(
5
),
502
509
(
2014
).
33.
N.
Gani
and
J.
Khanam
, “
Are surfactant molecules really oriented in the interface?
,”
J. Chem. Educ.
79
(
3
),
332
333
(
2002
).
34.
D. E.
Alexander
, “
The biomechanics of solids and fluids: The physics of life
,”
Eur. J. Phys.
37
(
5
),
053001
(
2016
).
35.
R.
Cross
, “
Elastic properties of plasticine, silly putty, and tennis strings
,”
Phys. Teach.
50
(
9
),
527
529
(
2012
).
36.
A. M.
Hoskinson
,
B. A.
Couch
,
B. M.
Zwickl
,
K. A.
Hinko
, and
M. D.
Caballero
, “
Bridging physics and biology teaching through modeling
,”
Am. J. Phys.
82
(
5
),
434
441
(
2014
).
37.
L. M.
Devenica
,
C.
Contee
,
R.
Cabrejo
,
M.
Kurek
,
E. F.
Deveney
, and
A. R.
Carter
, “
Biophysical measurements of cells, microtubules, and DNA with an atomic force microscope
,”
Am. J. Phys.
84
(
4
),
301
310
(
2016
).
38.
S. V.
Kontomaris
and
A.
Stylianou
, “
Atomic force microscopy for university students: Applications in biomaterials
,”
Eur. J. Phys.
38
(
3
),
033003
(
2017
).
39.
E. J.
Cohn
, “
Blood and blood derivatives
,”
J. Chem. Educ.
22
(
8
),
415
416
(
1945
).
40.
P.
Pederson
,
M.
Majewski
, and
P.
Lipke
, “
A demonstration of erythrocyte membrane asymmetry
,”
J. Chem. Educ.
62
(
7
),
621
622
(
1985
).
41.
L.
Martínez-Balbuena
,
A.
Maldonado-Arce
, and
E.
Hernández-Zapata
, “
Elasticidad de las membranas biológicas
,”
Rev. Mex. Fís. E
56
,
107
122
(
2010
).
42.
L.
Peliti
, “
Amphiphilic membranes
,” in
Fluctuating Geometries in Statistical Mechanics and Field Theory
, edited by F. David, P. Ginspark, and J. Zinn-Justin (Elsevier, Amsterdam, 1996).
43.
M.
Deserno
, “
Fluid lipid membranes a primer
,” <https://www.cmu.edu/biolphys/deserno/pdf/membrane_theory.pdf>.
44.
D. H.
Boal
,
Mechanics of the Cell
, 2nd ed. (
Cambridge U. P
.,
Cambridge
,
2008
).
45.
O. G.
Mouritsen
and
L. A.
Bagatolli
,
Life as a Matter of Fat: Lipids in a Membrane Biophysics Perspective
, 2nd ed. (
Springer International Publishing
,
Switzerland
,
2016
).
46.
A.
Guckenberger
and
S.
Gekle
, “
Theory and algorithms to compute Helfrich bending forces: A review
,”
J. Phys. Cond. Matter
29
(
20
),
203001
203031
(
2017
).
47.
J. B.
Freund
, “
Numerical simulation of flowing blood cells
,”
Annu. Rev. Fluid Mech.
46
,
67
95
(
2014
).
48.
E.
Kreyszig
,
Differential Geometry
, 1st ed. (
Dover
,
Toronto
,
1991
).
49.
M. P.
do Carmo
,
Differential Geometry of Curves and Surfaces
, 2nd ed. (
Prentice-Hall
,
New Jersey
,
2016
).
50.
C. C.
Hsiung
,
A First Course in Differential Geometry
(
International Press
,
Massachusetts
,
2013
).
51.
A. N.
Kolmogorov
and
S. V.
Fonin
,
Elements of the Theory of Functions and Functional Analysis
(
Dover
,
New York
,
1999
).
52.
S. K.
Gupta
,
Numerical Methods for Engineers
, 3rd ed. (
New Age International Publishers
,
London
,
2005
).
53.
G.
Aubert
and
P.
Kornprobst
,
Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations
, 2nd ed. (
Springer
,
New York
,
2006
).
54.
R.
Kimmel
,
Numerical Geometry of Images: Theory, Algorithms, and Applications
(
Springer
,
New York
,
2004
).
55.
H.
Goldstein
,
C. P.
Poole
, and
J. L.
Safko
,
Classical Mechanics
, 3rd ed. (
Pearson Education Limited
,
Great Britain
,
2014
).
56.
S. M.
Carroll
,
Spacetime and Geometry: An Introduction to General Relativity
(
Cambridge U. P
.,
Cambridge
,
2019
).
57.
S. A.
Safran
,
Statistical Thermodynamics of Surfaces, Interfaces, and Membranes
(
CRC Press
,
Boca Raton, FL
,
2018
).
58.
By choosing this particular parameterization, it is possible to compute the Euler–Lagrange equations in the end by standard formulas, as in Eq. (19). In general, this formula is not applicable, because the Helfrich energy involves the second order derivatives of the surface. We cannot do this if we use z instead of ρ as the independent variable, with the corresponding parameterization X(z,θ)=[ρ(z)cosθ,ρ(z)sinθ,z]. Unfortunately, because of this, it is not possible to parameterize a surface of peanut shape globally, leading to a singularity discussed later on in the text.
59.
C.
Lanczos
,
The Variational Principles of Mechanics
, 4th ed. (
Dover
,
New York
,
1970
).
60.
G. B.
Thomas
,
Calculus. Single Variable
, 12th ed. (
Addison-Wesley
,
Boston
,
2010
).
61.
R.
Capovilla
and
J.
Guven
, “
Stresses in lipid membranes
,”
J. Phys. A
35
(
30
),
6233
6247
(
2002
).
62.
B.
Bozic
,
J.
Guven
,
P.
Vazquez-Montejo
, and
S.
Svetina
, “
Direct and remote constriction of membrane necks
,”
Phys. Rev. E
89
(
5
),
052701
(
2014
).
63.
R.
Kwok
and
E.
Evans
, “
Thermoelasticity of large lecithin bilayer vesicles
,”
Biophys. J.
35
(
3
),
637
652
(
1981
).
64.
K.
Michel
,
Y.
Pavel
,
M.
Eugene
,
M.
Kouacou
, and
J.
Zoueu
, “
Dynamics study of the deformation of red blood cell by optical tweezers
,”
Open J. Biophys.
7
,
59
69
(
2017
).
65.
K.
Haase
and
A. E.
Pelling
, “
Investigating cell mechanics with atomic force microscopy
,”
J. R. Soc. Interface
12
,
20140970
(
2015
).
66.
J.
Wu
,
Y.
Li
,
D.
Lu
,
Z.
Liu
,
Z.
Cheng
, and
L.
He
, “
Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers
,”
Cryo Lett.
30
(
2
),
89
95
(
2009
).
67.
F.
Julicher
and
U.
Seifert
, “
Shape equations for axisymmetric vesicles: A clarification
,”
Phys. Rev. E
49
(
5
),
4728
4731
(
1994
).
68.
W. C.
Hwang
and
R. E.
Waugh
, “
Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells
,”
Biophys. J.
72
(
6
),
2669
2678
(
1997
).
69.
P. B.
Canham
and
A. C.
Burton
, “
Distribution of size and shape in populations of normal Numan red cells
,”
Circ. Res.
22
,
405
422
(
1968
).
70.
C.
Pozrikidis
, “
Resting shape and spontaneous membrane curvature of red blood cells
,”
Math. Med. Biol.
22
(
1
),
34
52
(
2005
).
71.
L.
Lanotte
,
J.
Mauer
,
S.
Mendez
,
D. A.
Fedosov
,
J. M.
Fromental
,
V.
Claveria
,
F.
Nicoud
,
G.
Gompper
, and
M.
Abkarian
, “
Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions
,”
Proc. Natl. Acad. Sci. U. S. A.
113
(
47
),
13289
13294
(
2016
).
72.
D.
Cordasco
and
P.
Bagchi
, “
On the shape memory of red blood cells
,”
Phys. Fluids
29
(
4
),
041901
(
2017
).
73.
R.
Osserman
, “
The isoperimetric inequality
,”
Bull. Am. Math. Soc.
84
(
6
),
1182
1238
(
1978
).
74.
J. T.
Jenkins
, “
Static equilibrium configurations of a model red blood cell
,”
J. Math. Biol.
4
(
2
),
149
169
(
1977
).
75.
Z.
Ou-Yang
and
W.
Helfrich
, “
Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders
,”
Phys. Rev. A
39
(
10
),
5280
5288
(
1989
).
76.
K.
Khairy
,
J.
Foo
, and
J.
Howard
, “
Shapes of red blood cells: Comparison of 3D confocal images with the bilayer-couple model
,”
Cell Mol. Bioeng.
1
(
2
),
173
181
(
2008
).
77.
R.
Mukhopadhyay
,
H. W.
Gerald-Lim
, and
M.
Wortis
, “
Echinocyte shapes: Bending, stretching, and shear determine spicule shape and spacing
,”
Biophys. J.
82
(
4
),
1756
1772
(
2002
).
78.
See supplementary material at https://www.scitation.org/doi/suppl/10.1119/10.0003452 for a detailed presentation of an algorithm that allows one to obtain the contour of the cell.

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.