Distance education has expanded significantly over the last decade, but the natural sciences have lagged in the implementation of this instructional mode. The abrupt onset of the COVID-19 pandemic left educational institutions scrambling to adapt curricula to distance modalities. With projected effects lasting through the 2020–2021 academic year, this problem will not go away soon. Analysis of the literature has elucidated the costs and benefits of, as well as obstacles to, the implementation of e-learning, with a focus on undergraduate physics education. Physics faculty report that a lack of time to learn about research-driven innovation is their primary barrier to implementing it. In response, this paper is intended to help physics lecturers and lab instructors re-think their courses now that distance learning is far more prevalent due to the pandemic. This paper serves as an all-in-one guide of recommendations for successful distanced educational practices, with an emphasis on smartphones and social media. These technologies were chosen for their utility in a virtual environment. Additionally, this paper can be used as a resource for university administrators to adapt to the changing needs associated with new teaching modalities.

1.
V.
Singh
and
A.
Thurman
, “
How many ways can we define online learning? A systematic literature review of definitions of online learning (1988–2018)
,”
Am. J. Distance Educ.
33
(
4
),
289
306
(
2019
).
2.
J. L.
Moore
,
C.
Dickson-Deane
, and
K.
Galyen
, “
e-Learning, online learning, and distance learning environments: Are they the same?
,”
Internet High. Educ.
14
(
2
),
129
135
(
2011
).
3.
S.
Guri-Rosenblit
, “‘
Distance education’ and ‘e-learning’: Not the same thing
,”
High. Educ.
49
,
467
493
(
2005
).
4.
D.
Zhang
,
J. L.
Zhao
,
L.
Zhou
, and
J. F.
Nunamaker
, “
Can e-learning replace classroom learning?
,”
Commun. ACM
47
(
5
),
75
79
(
2004
).
5.
S.
Hrastinski
, “
A study of asynchronous and synchronous e-learning methods discovered that each supports different purposes
,”
EDUCAUSE Q.
31
(
4
),
51
55
(
2008
), see http://www-cdn.educause.edu/library/EQM0848.
6.
J. E.
Seaman
,
E. I.
Allen
, and
J.
Seaman
,
Grade Increase: Tracking Distance Education in the United States
(
The Babson Survey Group
,
Wellesley, MA
,
2018
).
7.
E. I.
Allen
and
J.
Seaman
,
Sizing the Opportunity: The Quality and Extent of Online Education in the United States, 2002 and 2003
(
Sloan-C
,
Needham, MA
,
2003
).
8.
T. D.
Snyder
,
C.
de Brey
, and
S. A.
Dillow
,
Digest of Education Statistics 2018 (NCES 2020–009)
(
National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education
,
Washington, DC
,
2019
).
9.
G.
Kortemeyer
,
Lessons from (almost) 25 Years of Hybrid and Online Physics Courses at Michigan State University
(
EdMedia + Innovate Learning
,
Washington, DC
,
2017
).
10.
R.
Lambourne
, “
Laboratory-based teaching and the physics innovations centre for excellence in teaching and learning
,”
Eur. J. Phys.
28
(
3
),
S29
S36
(
2007
).
11.
R.
Lambourne
, “
Einstein at a distance
,”
Eur. J. Phys.
26
(
6
),
S135
S140
(
2005
).
12.
N. D.
Adams
, “Teaching introductory physics online,” ERIC, Report No. ED478781 (
2003
).
13.
E. J.
Sintema
, “
Effect of COVID-19 on the performance of grade 12 students: Implications for STEM education
,”
Eurasia J. Math. Sci. Tech. Ed.
16
(
7
),
1
6
(
2020
).
14.
M.
Dancy
and
C.
Henderson
, “
Pedagogical practices and instructional change of physics faculty
,”
Am. J. Phys.
78
(
10
),
1056
1063
(
2010
).
15.
C.
Henderson
and
M. H.
Dancy
, “
Barriers to the use of research-based instructional strategies: The influence of both individual and situational characteristics
,”
Phys. Rev. Spec. Top.-Phys. Educ. Res.
3
(
2
),
1
14
(
2007
).
16.
V.
Arkorful
and
N.
Abaidoo
, “
The role of e-learning, advantages and disadvantages of its adoption in higher education
,”
Int. J. Instruct. Technol. Distance Learn.
12
(
1
),
29
36
(
2015
), see https://www.itdl.org/Journal/Jan_15/Jan15.pdf#page=33.
17.
A. F.
Mayadas
,
J.
Bourne
, and
P.
Bacsich
, “
Online education today
,”
Science
323
(
5910
),
85
89
(
2009
).
18.
G.
Packham
,
P.
Jones
,
C.
Miller
, and
B.
Thomas
, “
E-learning and retention: Key factors influencing student withdrawal
,”
Educ. Train.
46
(
6/7
),
335
342
(
2004
).
19.
C. A.
Murphy
and
J. C.
Stewart
, “
On-Campus students taking online courses: Factors associated with unsuccessful course completion
,”
Internet High. Educ.
34
,
1
9
(
2017
).
20.
A.
Rosenthal
, “The trouble with online college,” New York Times, February 19,
2013
. Retrieved from https://www.nytimes.com/2013/02/19/opinion/the-trouble-with-online-college.html.
21.
X.
Zhai
,
M.
Li
, and
S.
Chen
, “
Examining the uses of student-led, teacher-led, and collaborative functions of mobile technology and their impacts on physics achievement and interest
,”
J. Sci. Educ. Technol.
28
,
310
320
(
2019
).
22.
C.
Zhu
, “
Student satisfaction, performance, and knowledge construction in online collaborative learning
,”
J. Educ. Technol. Soc.
15
(
1
),
127
136
(
2012
), see https://www.jstor.org/stable/jeductechsoci.15.1.127.
23.
M. B.
Kustusch
, “
Assessing the impact of representational and contextual problem features on student use of right-hand rules
,”
Phys. Rev. Phys. Educ. Res.
12
(
1
),
010102
(
2016
).
24.
A.
Badia
,
D.
Martín
, and
M.
Gómez
, “
Teachers' perceptions of the use of moodle activities and their learning impact in secondary education
,”
Technol. Know. Learn.
24
,
483
499
(
2019
).
25.
E. K.
Faulconer
,
J. C.
Griffith
,
B.
Wood
,
S.
Acharyya
, and
D.
Roberts
, “
A comparison of online, video synchronous, and traditional learning modes for an introductory undergraduate physics course
,”
J. Sci. Educ. Technol.
27
,
404
411
(
2018
).
26.
P.-C.
Sun
,
R. J.
Tsai
,
G.
Finger
,
Y.-Y.
Chen
, and
D.
Yeh
, “
What drives a successful e-Learning? An empirical investigation of the critical factors influencing learner satisfaction
,”
Comput. Educ.
50
(
4
),
1183
1202
(
2008
).
27.
H. M.
Selim
, “
Critical success factors for e-learning acceptance: Confirmatory factor models
,”
Comput. Educ.
49
(
2
),
396
413
(
2007
).
28.
X.
Zhai
,
M.
Zhang
, and
X.
Zhang
, “
Understanding the relationship between levels of mobile technology use in high school physics classrooms and the learning outcome
,”
Brit. J. Educ. Technol.
50
(
2
),
750
766
(
2018
).
29.
A. S.
Chow
and
R. A.
Croxton
, “
Designing a responsive e-learning infrastructure: Systemic change in higher education
,”
Am. J. Distance Educ.
31
(
1
),
20
42
(
2017
).
30.
J. E.
Brindley
,
L. M.
Blaschke
, and
C.
Walti
, “
Creating effective collaborative learning groups in an online environment
,”
Int. Rev. Res. Open Dis
10
(
3
),
1
18
(
2009
).
31.
J. K.
Njenga
and
L. C. H.
Fourie
, “
The myths about e-learning in higher education
,”
Brit. J. Educ. Technol.
41
(
2
),
199
212
(
2010
).
32.
Z. D.
Berger
,
N. G.
Evans
,
A. L.
Phelan
, and
R. D.
Silverman
, “Covid-19: Control measures must be equitable and inclusive,”
BMJ
368
,
m1141
(
2020
).
33.
W.
Van Lacker
and
Z.
Parolin
, “
COVID-19, school closures, and child poverty: A social crisis in the making
,”
Lancet
5
(
5
),
E243
244
(
2020
).
34.
Federal Data Summary: School Years 2015–16 through 2017–18 (National Center for Homeless Education, Greensboro, NC,
2020
), see https://nche.ed.gov/wp-content/uploads/2020/01/Federal-Data-Summary-SY-15.16-to-17.18-Published-1.30.2020.pdf.
35.
M.
Anderson
and
J.
Jiang
, “Teens, social media & technology 2018,” Pew Research Center (
2018
).
36.
Pew Research Center, Mobile Fact Sheet.
<https://www.pewresearch.org/internet/fact-sheet/mobile/> (
2019
). Accessed on September 22, 2020.
37.
D. M.
Coca
and
J.
Slisko
, “
Software socrative and smartphones as tools for implementation of basic processes of active physics learning in classroom: An initial feasibility study with prospective teachers
,”
Eur. J. Phys. Educ.
4
(
2
),
17
24
(
2017
).
38.
J.
Huang
,
A. J.
Gates
,
R.
Sinatra
, and
A.-L.
Barabási
, “
Historical comparison of gender inequality in scientific careers across countries and disciplines
,”
Proc. Natl. A. Sci. U. S. A.
117
(
9
),
4609
4616
(
2020
).
39.
Z.
Hazari
,
G.
Sonnert
,
P. M.
Sadler
, and
M.-C.
Shanahan
, “
Connecting high school physics experiences, outcome expectations, physics identity, and physics career choice
,”
J. Res. Sci. Teach.
47
(
8
),
978
1003
(
2010
).
40.
C. E.
Porter
and
N.
Donthu
, “
Using the technology acceptance model to explain how attitudes determine Internet usage: The role of perceived access barriers and demographics
,”
J. Business Res.
59
(
9
),
999
1007
(
2006
).
41.
A.
Pramuda
, M.
Mundilarto
,
H.
Kuswanto
, and
S.
Hadiati
, “
Effect of real-time physics organizer based smartphone and indigenous technology to students' scientific literacy viewed from gender differences
,”
Int. J. Instruct.
12
(
3
),
253
270
(
2019
).
42.
A.
Padilla-Meléndez
,
A. R.
del Aguila-Obra
, and
A.
Garrido-Moreno
, “
Perceived playfulness, gender differences, and technology acceptance model in a blended learning scenario
,”
Comput. Educ.
63
,
306
317
(
2013
).
43.
K.-T.
Wong
,
T.
Teo
, and
S.
Russo
, “
Influence of gender and computer teaching efficacy on computer acceptance among Malaysian student teachers: An extended technology acceptance model
,”
Australasian J. Educ. Technol.
28
(
7
),
1190
1207
(
2012
).
44.
M.
Moran
,
M.
Hawkes
, and
O. El
Gayar
, “
Tablet personal computer integration in higher education: Applying the unified theory of acceptance and use technology model to understand supporting factors
,”
J. Educ. Comput. Res.
42
(
1
),
70
101
(
2010
).
45.
B.
Pynoo
et al, “
Predicting secondary school teachers' acceptance and use of a digital learning environment: A cross-sectional study
,”
Comp. Human Behav.
27
(
1
),
568
575
(
2011
).
46.
C. M. Y.
Rasimah
,
A.
Ahmad
, and
H.
Zaman
, “
Evaluation of user acceptance of mixed reality technology
,”
Australas. J. Educ. Technol.
27
(
8
),
1369
1387
(
2011
).
47.
T.
Teo
, “
Factors influencing teachers' intention to use technology: Model development and test
,”
Comput. Educ.
57
(
4
),
2432
2440
(
2011
).
48.
B.
Šumak
,
M.
Heričko
,
M.
Pušnik
, and
G.
Polančič
, “
Factors affecting acceptance and use of moodle: And empirical study based on TAM
,”
Informatica
35
,
91
100
(
2011
), see http://www.informatica.si/index.php/informatica/article/view/336.
49.
T.
Ott
, “
Mobile phones in school: From disturbing objects to infrastructure for learning
,” Ph.D. thesis, Gteborgs Universitet,
2017
.
50.
A.
Buchholz
,
B.
Perry
,
L. Beck
Weiss
, and
D.
Cooley
, “
Smartphone use and perceptions among medical students and practicing physicians
,”
J. MTM.
5
,
27
32
(
2016
).
51.
M.
Anshari
,
M. N.
Almunawar
,
M.
Shahrill
,
D. K.
Wicaksono
, and
M.
Huda
, “
Smartphones usage in the classrooms: Learning aid or interference
?,”
Educ. Inf. Technol.
22
,
3063
3079
(
2017
).
52.
J.
Attewell
,
Mobile Technologies and Learning: A Technology Update and m-Learning Project Summary
(
Learning and Skills Development Agency
,
London
,
2005
).
53.
L.
Kolb
, “
Adventures with cell phones
,”
Educ. Leadership
68
(
5
),
46
55
(
2011
), see http://educ116eff11.pbworks.com/w/file/fetch/47202726/kolb%20cells.pdf.
54.
D. K.
Duncan
,
A. R.
Hoekstra
, and
B. R.
Wilcox
, “
Digital devices, distraction, and new student performance: Does in-class cell phone use reduce learning?
,”
Astron. Educ. Rev.
11
(
1
), 010108 (
2012
).
55.
J. A.
Sans
et al, “
Smartphone: A new device for teaching Physics
,” in
Proceedings 1st International Conference on Higher Education Advances
,
Valencia, Spain
(
2015
).
56.
K.
Hochberg
,
J.
Kuhn
, and
Andreas
M'́uller
, “
Using smartphones as experimental tools—Effects on interest, curiosity, and learning in physics education
,”
J. Sci. Educ. Technol.
27
,
385
403
(
2018
).
57.
R.
Vieyra
,
C.
Vieyra
,
A.-M.
Pendrill
, and
B.
Xu
, “
Gamified physics challenges for teachers and the public
,”
Phys. Educ.
55
(
4
),
045014
(
2020
).
58.
K.
Alexandros
,
L.
Panagiotis
,
T.
Serafeim
,
T.
Pavlos
, and
V.
Athanasios
, “
Possible technical problems encountered by the teacher in the incorporation of mobile phone sensors in the physics lab
,”
Eur. J. Phys. Educ.
11
(
2
),
5
23
(
2020
), see http://eu-journal.org/index.php/EJPE/article/view/275.
59.
J.
Kozminski
et al,
AAPT Recommendations for the Undergraduate Physics Laboratory Curriculum (
AAPT
,
College Park, MD
,
2014
).
60.
N. G.
Holmes
and
E. M.
Smith
, “
Operationalizing the AAPT learning goals for the lab
,”
Phys. Teach.
57
,
296
299
(
2019
).
61.
U.
Pili
,
R.
Violanda
, and
C.
Ceniza
, “
Measurement of g using a magnetic pendulum and a smartphone magnetometer
,”
Phys. Teach.
56
,
258
259
(
2018
).
62.
S.
Kapucu
, “
A simple experiment to measure the maximum coefficient of static friction with a smartphone
,”
Phys. Educ.
53
(
5
),
053006
(
2018
).
63.
A.
Çoban
and
M.
Erol
, “
Teaching and determination of kinetic friction coefficient using smartphones
,”
Phys. Educ.
54
(
2
),
025019
(
2019
).
64.
C.
Baldock
and
R.
Johnson
, “
Investigation of kinetic friction using an iPhone
,”
Phys. Educ.
51
(
6
),
065005
(
2016
).
65.
D.
Lopez
,
I.
Caprile
,
F.
Corvacho
, and
O.
Reyes
, “
Study of a variable mass Atwood's machine using a smartphone
,”
Phys. Teach.
56
,
182
183
(
2018
).
66.
W.
Namchanthra
et al, “
Analyzing a torsion pendulum using a smartphone's sensors: Mechanical energy conservation approach
,”
Phys. Educ.
54
(
6
),
065007
(
2019
).
67.
T.
Pierratos
and
H. M.
Polatoglou
, “
Study of the conservation of mechanical energy in the motion of a pendulum using a smartphone
,”
Phys. Educ.
53
(
1
),
015021
(
2018
).
68.
P.
Vogt
and
J.
Kuhn
, “
Analyzing collision processes with the smartphone acceleration sensor
,”
Phys. Teach.
52
,
118
119
(
2014
).
69.
S. K.
Ayop
, “
Analyzing impulse using iPhone and tracker
,”
Phys. Teach.
55
,
480
481
(
2017
).
70.
J. C.
Sanders
, “
The effects of projectile mass on ballistic pendulum displacement
,”
Am. J. Phys.
88
(
5
),
360
364
(
2020
).
71.
L.
Seeley
and
E.-H.
Shin
, “
Colliding without touching: Using magnets and copper pipe fittings to explore the energetics of a completely inelastic collision
,”
Am. J. Phys.
86
(
9
),
712
717
(
2018
).
72.
U.
Pili
, “
A dynamic-based measurement of a spring constant with a smartphone light sensor
,”
Phys. Educ.
53
(
3
),
033002
(
2018
).
73.
U.
Pili
and
R.
Violanda
, “
Measuring a spring constant with a magnetic spring-mass oscillator and a telephone pickup
,”
Phys. Educ.
54
(
4
),
043001
(
2019
).
74.
J. A.
Sans
,
F. J.
Manjón
,
A. L. J.
Pereira
,
J. A.
Gomez-Tejedor
, and
J. A.
Monsoriu
, “
Oscillations studied with the smartphone ambient light sensor
,”
Eur. J. Phys.
34
(
6
),
1349
1354
(
2013
).
75.
J. C.
Castro-Palacio
,
L.
Velázquez-Abad
,
M. H.
Giménez
, and
J. A.
Monsoriu
, “
Using a mobile phone acceleration sensor in physics experiments on free and damped harmonic oscillations
,”
Am. J. Phys.
81
(
6
),
472
475
(
2013
).
76.
R.
Jaafar
,
S. K.
Ayop
,
A. T.
Ismail
,
K. K.
Hon
,
A. N. M.
Daud
, and
M. H.
Hashim
, “
Visualization of Harmonic Series in Resonance Tubes Using a Smartphone
,”
Phys. Teach.
54
,
545
547
(
2016
).
77.
J. A.
Gómez-Tejedor
,
J. C.
Castro-Palacio
, and
J. A.
Monsoriu
, “
The acoustic Doppler effect applied to the study of linear motions
,”
Eur. J. Phys.
35
(
2
),
025006
(
2014
).
78.
R.
Pörn
and
Mats
Braskén
, “
Interactive modeling activities in the classroom—Rotational motion and smartphone gyroscopes
,”
Phys. Educ.
51
(
6
),
065021
(
2016
).
79.
A.
Shakur
and
J.
Kraft
, “
Measurement of Coriolis acceleration with a smartphone
,”
Phys. Teach.
54
,
288
290
(
2016
).
80.
M. S. M. N. F.
Gomes
,
P.
Martín-Ramos
,
P. S. P.
da Silva
, and
M. R.
Silva
, “
The ‘spinning disk touches stationary disk’ problem revisited: An experimental approach
,”
Eur. J. Phys.
39
(
4
),
045709
(
2018
).
81.
P.
Klein
,
A.
Müller
,
S.
Gröber
,
A.
Molz
, and
J.
Kuhn
, “
Rotational and frictional dynamics of the slamming of a door
,”
Am. J. Phys.
85
(
1
),
30
37
(
2017
).
82.
N.-A.
Goy
et al, “
Surface tension measurements with a smartphone
,”
Phys. Teach.
55
,
498
499
(
2017
).
83.
M.
Wei
et al, “
The study of liquid surface waves with a smartphone camera and an image recognition algorithm
,”
Eur. J. Phys.
36
(
6
),
065026
(
2015
).
84.
M. R.
Silva
,
P.
Martín-Ramos
, and
P. P.
da Silva
, “
Studying cooling curves with a smartphone
,”
Phys. Teach.
56
,
53
55
(
2018
).
85.
J.
Rayner
, “
Using a cell phone to investigate the skin depth effect in salt water
,”
Phys. Teach.
55
,
83
86
(
2017
).
86.
F. G.
Tomasel
and
M. C.
Marconi
, “
Rolling magnets down a conductive hill: Revisiting a classic demonstration of the effects of eddy currents
,”
Am. J. Phys.
80
(
9
),
800
803
(
2012
).
87.
A. A.
Soares
and
T. O.
Reis
, “
Studying Faraday's law of induction with a smartphone and personal computer
,”
Phys. Educ.
54
(
5
),
055006
(
2019
).
88.
G. A.
Sobral
, “
Development of a metal detector for smartphones and its use in the teaching laboratory
,”
Phys. Educ.
53
(
4
),
045006
(
2018
).
89.
E.
Arribas
,
I.
Escobar
,
C. P.
Suarez
,
A.
Najera
, and
A.
Beléndez
, “
Measurement of the magnetic field of small magnets with a smartphone: A very economical laboratory practice for introductory physics courses
,”
Eur. J. Phys.
36
(
6
),
065002
(
2015
).
90.
Y.
Ogawara
,
S.
Bhari
, and
S.
Mahrley
, “
Observation of the magnetic field using a smartphone
,”
Phys. Teach.
55
,
184
185
(
2017
).
91.
T.
Rosi
and
P.
Onorato
, “
Video analysis-based experiments regarding Malus' law
,”
Phys. Educ.
55
(
4
),
045011
(
2020
).
92.
M.
Monteiro
,
C.
Stari
,
C.
Cabeza
, and
A. C.
Martí
, “
The polarization of light and Malus' law using smartphones
,”
Phys. Teach.
55
,
264
266
(
2017
).
93.
K.
Malisorn
et al, “
Demonstration of light absorption and light scattering using smartphones
,”
Phys. Educ.
55
(
1
),
015012
(
2020
).
94.
J.
Freeland
,
V. R.
Krishnamurthi
, and
Y.
Wang
, “
Learning the lens equation using water and smartphones/tablets
,”
Phys. Teach.
58
,
360
361
(
2020
).
95.
C.-M.
Chiang
and
H.-Y.
Cheng
, “
Use smartphones to measure Brewster's angle
,”
Phys. Teach.
57
,
118
119
(
2019
).
96.
I.
Salinas
,
M. H.
Giménez
,
J. A.
Monsoriu
, and
J. C.
Castro-Palacio
, “
Characterization of linear light sources with the smartphone's ambient light sensor
,”
Phys. Teach.
56
,
562
563
(
2018
).
97.
P.
Onorato
and
L. M.
Gratton
, “
Measuring the Raman spectrum of water with a smartphone, laser diodes and diffraction grating
,”
Eur. J. Phys.
41
(
2
),
025304
(
2020
).
98.
H.
Ghalila
et al, “
Hands-on experimental and computer laboratory in optics: The Young double slit experiment
,”
SPIE Optical Engineering + Applications
(
SPIE
,
San Diego, CA
,
2018
).
99.
M.
Pirbhai
, “
Smartphones and Tracker in the e/m experiment
,”
Phys. Educ.
55
(
1
),
015001
(
2019
).
100.
J.
Durelle
,
J.
Jones
,
S.
Merriman
, and
A.
Balan
, “
A smartphone-based introductory astronomy experiment: Seasons investigation
,”
Phys. Teach.
55
,
122
123
(
2017
).
101.
J.
Vandermarlière
, “
On the inflation of a rubber balloon
,”
Phys. Teach.
54
,
566
567
(
2016
).
102.
K.
Forinash
and
R. F.
Wisman
, “
Smartphones as portable oscilloscopes for physics labs
,”
Phys. Teach.
50
,
242
243
(
2012
).
103.
O.
Schwarz
,
P.
Vogt
, and
J.
Kuhn
, “
Acoustic measurements of bouncing balls and the determination of gravitational acceleration
,”
Phys. Teach.
51
,
312
313
(
2013
).
104.
P.
Vogt
and
J.
Kuhn
, “
Analyzing free fall with a smartphone acceleration sensor
,”
Phys. Teach.
50
,
182
183
(
2012
).
105.
J.
Kim
et al, “
A measurement of gravitational acceleration using a metal ball, a ruler, and a smartphone
,”
Phys. Teach.
58
,
192
194
(
2020
).
106.
J.
Kuhn
,
P.
Vogt
, and
F.
Theilmann
, “
Going nuts: Measuring free-fall acceleration by analyzing the sound of falling metal pieces
,”
Phys. Teach.
54
,
182
183
(
2016
).
107.
L. A.
Testoni
and
G.
Brockington
, “
The use of smartphones to teach kinematics: An inexpensive activity
,”
Phys. Educ.
51
(
6
),
1
7
(
2016
).
108.
E.
Azhikannickal
, “
Sports, smartphones, and simulation as an engaging method to teach projectile motion incorporating air resistance
,”
Phys. Teach.
57
,
308
311
(
2019
).
109.
C.
Fahsl
and
P.
Vogt
, “
Determination of the drag resistance coefficients of different vehicles
,”
Phys. Teach.
56
,
324
325
(
2018
).
110.
V. L. B.
de Jesus
and
D. G. G.
Sasaki
, “
Modelling of a collision between two smartphones
,”
Phys. Educ.
51
(
5
),
055006
(
2016
).
111.
V.
Pereira
,
P.
Martín-Ramos
,
P. P.
da Silva
, and
M. R.
Silva
, “
Studying 3D collisions with smartphones
,”
Phys. Teach.
55
,
312
313
(
2017
).
112.
J.
Kuhn
and
P.
Vogt
, “
Analyzing acoustic phenomena with a smartphone microphone
,”
Phys. Teach.
51
,
118
119
(
2013
).
113.
J.
Kuhn
and
P.
Vogt
, “
Analyzing spring pendulum phenomena with a smart-phone acceleration sensor
,”
Phys. Teach.
50
,
504
505
(
2012
).
114.
S.
Hellesund
, “
Measuring the speed of sound in air using a smartphone and a cardboard tube
,”
Phys. Educ.
54
(
3
),
035015
(
2019
).
115.
S. O.
Parolin
and
G.
Pezzi
, “
Measuring the speed of sound in air using a smartphone and a cardboard tube
,”
Phys. Teach.
51
,
508
509
(
2013
).
116.
A.
Yavuz
, “
Measuring the speed of sound in air using smartphone applications
,”
Phys. Educ.
50
(
3
),
281
284
(
2015
).
117.
S.
Staacks
,
S. H
utz
,
H.
Heinke
, and
C.
Stampfer
, “
Simple time-of-flight measurement of the speed of sound using smartphones
,”
Phys. Teach.
57
,
112
113
(
2019
).
118.
J.
Bonato
,
L. M.
Gratton
,
P.
Onorato
, and
S.
Oss
, “
Using high speed smartphone cameras and video analysis techniques to teach mechanical wave physics
,”
Phys. Educ.
52
(
4
),
045017
(
2017
).
119.
M.
Monteiro
,
C.
Stari
,
C.
Cabeza
, and
A. C.
Marti
, “
A bottle of tea as a universal Helmholtz resonator
,”
Phys. Teach.
56
,
644
645
(
2018
).
120.
S. H.
Hawley
and
R. E.
McClain
, “
Visualizing sound directivity via smartphone sensors
,”
Phys. Teach.
56
,
72
74
(
2018
).
121.
M.
Thees
,
K.
Hochberg
,
J.
Kuhn
, and
M.
Aeschlimann
, “
Adaptation of acoustic model experiments of STM via smartphones and tablets
,”
Phys. Teach.
55
,
436
437
(
2017
).
122.
A.
Müller
,
M.
Hirth
, and
J.
Kuhn
, “
Tunnel pressure waves—A smartphone inquiry on rail travel
,”
Phys. Teach.
54
,
118
119
(
2016
).
123.
R. P.
Smith
and
E. H.
Matlis
, “
Gravity-driven fluid oscillations in a drinking straw
,”
Am. J. Phys.
87
(
6
),
433
435
(
2019
).
124.
U.
Dilek
and
S. K.
Şengören
, “
A new position sensor to analyze rolling motion using an iPhone
,”
Phys. Educ.
54
(
4
),
043005
(
2019
).
125.
P.
Vogt
and
J.
Kuhn
, “
Analyzing radial acceleration with a smartphone acceleration sensor
,”
Phys. Teach.
51
,
182
183
(
2013
).
126.
M.
Monteiro
,
C.
Cabeza
, and
A. C.
Martí
, “
Exploring phase space using smartphone acceleration and rotation sensors simultaneously
,”
Eur. J. Phys.
35
(
4
),
1
9
(
2014
).
127.
I.
Salinas
,
M. H.
Gimenez
,
J. A.
Monsoriu
, and
J. A.
Sans
, “
Demonstration of the parallel axis theorem through a smartphone
,”
Phys. Teach.
57
,
340
341
(
2019
).
128.
U.
Pili
and
R.
Violanda
, “
Measuring average angular velocity with a smartphone magnetic field sensor
,”
Phys. Teach.
56
,
114
115
(
2018
).
129.
J.
Chevrier
,
L.
Madani
,
S.
Ledenmat
, and
A.
Bsiesy
, “
Teaching classical mechanics using smartphones
,”
Phys. Teach.
51
,
376
377
(
2013
).
130.
S.
Mau
,
F.
Insulla
,
E. E.
Pickens
,
Z.
Ding
, and
S. C.
Dudley
, “
Locating a smartphone's accelerometer
,”
Phys. Teach.
54
,
246
247
(
2016
).
131.
S.
Macchia
, “
Analyzing Stevin's law with the smartphone barometer
,”
Phys. Teach.
54
,
373
(
2016
).
132.
M.
Monteiro
,
P.
Vogt
,
C.
Stari
,
V.
Cabeza
, and
A. C.
Marti
, “
Exploring the atmosphere using smartphones
,”
Phys. Teach.
54
,
308
309
(
2016
).
133.
A.
Girot
,
N.-A.
Goy
,
A.
Viliquin
, and
U.
Delabre
, “
Studying ray optics with a smartphone
,”
Phys. Teach.
58
,
133
135
(
2020
).
134.
B.
Underwood
and
Y.
Zhai
, “
Moving phones tick slower: Creating an android app to demonstrate time dilation
,”
Phys. Teach.
54
,
277
279
(
2016
).
135.
J.
Kuhn
,
A.
Molz
,
S.
Gr'́ober
, and
J.
Fr'́ubis
, “
Radioactivity – Possibilities and limitations for using smartphones and tablet PCs as radioactive counters
,”
Phys. Teach.
52
,
351
356
(
2014
).
136.
M.
Meißner
and
H.
Haertig
, “
Smartphone astronomy
,”
Phys. Teach.
52
,
440
441
(
2014
).
137.
A.
Mazzella
and
I.
Testa
, “
An investigation into the effectiveness of smartphone experiments on students' conceptual knowledge about acceleration
,”
Phys. Educ.
51
,
055010
(
2016
).
138.
J.
Lincoln
, “
Enhancing physics demos using iPhone slow motion
,”
Phys. Teach.
55
,
588
589
(
2017
).
139.
M.
Kubsch
,
J.
Nordine
, and
D.
Hadinek
, “
Using smartphone thermal cameras to engage students? misconceptions about energy
,”
Phys. Teach.
55
,
504
505
(
2017
).
140.
C.
McLoughlin
and
M. J. W.
Lee
, “
Personalised and self regulated learning in the Web 2.0 era: International exemplars of innovative pedagogy using social software
,”
Australas. J. Educ. Technol.
26
(
1
),
28
43
(
2010
).
141.
J. E.
Rodriguez
, “
Social media use in higher education: Key areas to consider for educators
,”
J. Online Learn. Teach.
7
(
4
),
539
550
(
2011
), see http://hdl.handle.net/10323/2153.
142.
T.
Joosten
,
Social Media for Educators: Strategies and Best Practices
(
Jossey-Bass
,
Hoboken, NJ
,
2012
).
143.
S.
Manca
and
M.
Ranieri
, “
Facebook and the others. Potentials and obstacles of social media for teaching in higher education
,”
Comput. Educ.
95
,
216
230
(
2016
).
144.
D.
Bouhnik
and
M.
Deshen
, “
WhatsApp goes to school: Mobile instant messaging between teachers and students
,”
J. Inf. Technol. Educ. Res.
13
,
217
231
(
2014
).
145.
M. A.
Haşiloğlu
,
H. S.
Çalhan
, and
M. E.
Ustaoğlu
, “
Determining the views of the secondary school science teachers about the use of social media in education
,”
J. Sci. Educ. Technol.
29
,
346
354
(
2020
).
146.
M.
Moran
,
J.
Seaman
, and
H.
Tinti-Kane
,
Blogs, Wikis, Podcasts and Facebook: How Today's Higher Education Faculty Use Social Media
(
Pearson Learning Solutions and Babson Survey Research Group
,
Boston, MA
,
2012
).
147.
T.
Buchanan
,
P.
Sainter
, and
G.
Saunders
, “
Factors affecting faculty use of learning technologies: Implications for models of technology adoption
,”
J. Comput. High. Educ.
25
,
1
11
(
2013
).
148.
Y.
Cao
,
H.
Ajjan
, and
P.
Hong
, “
Using social media applications for educational outcomes in college teaching: A structural equation analysis
,”
Brit. J. Educ. Technol.
44
(
4
),
581
593
(
2013
).
149.
U.
Matzat
and
E. M.
Vrieling
, “
Self-regulated learning and social media – A ‘natural alliance’? Evidence on students' self-regulation of learning, social media use, and student-teacher relationship
,”
Learn. Media Technol.
41
(
1
),
73
99
(
2015
).
150.
E.
Hargittai
and
G.
Walejko
, “
The participation divide: Content creation and sharing in the digital age
,”
Inform. Commun. Soc.
11
(
2
),
239
256
(
2008
).
151.
W.
Bao
, “
COVID-19 and online teaching in higher education: A case study of Peking University
,”
Hum. Beh. Emerging Technol.
2
(
2
),
113
115
(
2020
).
152.
A. B.
Amry
, “
The impact of WhatsApp mobile social learning on the achievement and attitudes of female students compared with face to face learning in the classroom
,”
Eur. Sci. J.
10
(
22
),
116
136
(
2014
), see http://eujournal.org/index.php/esj/article/view/3909.
153.
A.
Klieger
and
L.
Goldsmith
, “
Expanding physics learning beyond classroom boundaries—A case study
,”
Phys. Educ.
55
(
2
),
025004
(
2020
).
154.
C.
Hart
, “
Factors associated with student persistence in an online program of study: A review of the literature
,”
J. Interact. Online Learn.
11
(
1
),
19
42
(
2012
), see http://www.ncolr.org/jiol/issues/pdf/11.1.2.pdf.
155.
Y.-C.
Hsu
and
Y.-H.
Ching
, “
Microblogging for strengthening a virtual learning community in an online course
,”
Knowl. Man. E-Learn.
3
(
4
),
585
598
(
2011
).
156.
K.
Page
, “
Using social media in a high school physics class
,”
Phys. Teach.
53
,
184
185
(
2015
).
157.
T.
Burden
, “
K-12 teachers uncertain about how to connect with students and parents via social media, reveals university of phoenix survey
,” (
2014
). <https://www.businesswire.com/news/home/20140114005604/en/K-12-Teachers-Uncertain-Connect-Students-Parents-Social>.
158.
S. E.
Schoper
and
A. R.
Hill
, “
Using Facebook to promote a virtual learning community: A case study
,”
J. Learn. Space
6
(
1
),
34
39
(
2017
), see http://libjournal.uncg.edu/jls/article/view/1334.
159.
E.
Gibney
, “
Open-hardware' pioneers push for low-cost lab kit: Conference aims to raise awareness of shared resources for building lab equipment
,”
Nature
531
,
147
148
(
2016
).
160.
J.
DeBoer
,
C.
Haney
,
S. Zahra
Atiq
,
C.
Smith
, and
D.
Cox
, “
Hands-on engagement online: Using a randomised control trial to estimate the impact of an at-home lab kit on student attitudes and achievement in a MOOC
,”
Eur. J. Eng. Educ.
44
(1–2),
234
252
(
2019
).
161.
D. K.
Kennepohl
, “
Providing effective teaching laboratories at an open laboratory
,”
Int. J. Innov. Online Educ.
1
(
4
),
1
14
(
2017
).
162.
Š.
Kubínová
and
J.
Šlégr
, “
Physics demonstrations with the Arduino board
,”
Phys. Educ.
50
(
4
),
472
474
(
2015
).
163.
J. M.
Long
,
B. P.
Horan
, and
R.
Hall
, “
Undergraduate electronics students' use of home experiment kits for distance education
,” in
Proceedings of 119th American Society for Engineering Education Annual Conference & Exposition
,
San Antonio, TX
(
2012
).
164.
R. W.
Hendricks
and
K.
Meehan
,
Lab in a Box: Introductory Experiments in Electric Circuits
(
Wiley
,
New York
2009
).
165.
R.
Heradio
et al, “
Virtual and remote labs in education: A bibliometric analysis
,”
Comput. Educ.
98
,
14
38
(
2016
).
166.
L.
Gomes
and
S.
Bogosyan
, “
Current trends in remote laboratories
,”
IEEE Trans. Ind. Electron.
56
(
12
),
4744
4756
(
2009
).
167.
J.
Ma
and
J. V.
Nickerson
, “
Hands-on, simulated, and remote laboratories: A comparative literature review
,”
ACM Surv.
38
(
3
),
1
24
(
2006
).
168.
D.
Hoxley
et al, “
FARLabs: Enhancing student engagement via remote laboratories
,” in
Proceedings of Australian Conference on Science and Mathematics Education
(
2014
).
169.
C. A.
Matarrita
and
S. B.
Concari
, “
Remote laboratories used in physics teaching: A state of the art
,”
in Proceedings of 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)
,
Madrid, Spain
(
2016
).
170.
P.
Orduña
et al, “
LabsLand: A sharing economy platform to promote educational remote laboratories maintainability, sustainability and adoption
,” in
IEEE Frontiers in Education Conference
, Erie,
PA, USA
(
2016
).
171.
K.
Jona
and
M.
Vondracek
, “
A remote radioactivity experiment
,”
Phys. Teach.
51
,
25
26
(
2013
).
172.
M.
Tawfik
et al, “
Virtual instrument systems in reality (VISIR) for remote wiring and measurement of electronic circuits on breadboard
,”
IEEE Trans. Learn. Technol.
6
(
1
),
60
72
(
2013
).
173.
J. G.
Zubia
and
G. R.
Alves
,
Using Remote Labs in Education: Two Little Ducks in Remote Experimentation
(
University of Deusto Press
,
Bilbao, Spain
,
2012
).
174.
A.
Jimoyiannis
and
V.
Komis
, “
Computer simulations in physics teaching and learning: A case study on students' understanding of trajectory motion
,”
Comput. Educ.
36
(
2
),
183
204
(
2001
).
175.
C. E.
Wieman
,
W. K.
Adams
, and
K. K.
Perkins
, “
PhET: Simulations that enhance learning
,”
Science
322
,
682
683
(
2008
).
176.
C. E.
Wieman
,
W. K.
Adams
,
P.
Loeblein
, and
K. K.
Perkins
, “
Teaching physics using PhET simulations
,”
Phys. Teach.
48
,
225
227
(
2010
).
177.
G.
Hatsidimitris
and
J.
Wolfe
, “
PHYSCLIPS: Multimedia resources for learning and teaching physics
,” in Proceedings of
2nd International STEM in Education Conference
, Beijing,
China
(
2012
).
178.
D.
MacIsaac
, “
ComPADRE digital collections
,”
Phys. Teach.
44
,
398
(
2006
).
179.
C.
Thompson
, “
How Khan academy is changing the rules of education
,”
Wired Mag.
126
,
1
5
(
2011
).
180.
C.
Lindstrøm
, “
Using Khan academy to support students' mathematical skill development in a physics course
,” in Proceedings of
122nd ASEE Annual Conference & Exposition
, Seattle,
WA
(
2015
).
181.
M.
Kettle
, “
Flipped physics
,”
Phys. Educ.
48
(
5
),
593
596
(
2013
).
182.
C. M.
Toquero
, “
Challenges and opportunities for higher education amid the COVID-19 pandemic: The Philippine context
,”
Pedagog. Res.
5
(
4
),
1
5
(
2020
).
183.
J.
Peppard
and
J.
Ward
, “
Beyond strategic information systems: Towards an IS capability
,”
J. Strategic. Inf. Syst.
13
(
2
),
167
194
(
2004
).
184.
P.
Sahu
, “
Closure of universities due to coronavirus disease 2019 (COVID-19): Impact on education and mental health of students and academic staff
,”
Cureus
12
(
4
),
1
6
(
2020
).
185.
P.
Odriozola-González
,
Á.
Planchuelo-Gómez
,
M. J.
Irutia
, and
R.
de Luis-García
, “
Psychological effects of the COVID-19 outbreak and lockdown among students and workers of a Spanish university
,”
Psychiat. Res.
290
,
113108
(
2020
).
186.
N.
Brown
,
K.
te Riele
,
B.
Shelley
, and
J.
Woodroffe
,
Learning at Home during COVID-19: Effects on Vulnerable Young Australians Independent Rapid Response Report
(
University of Tasmania, Peter Underwood Centre for Educational Attainment
,
Hobart
,
2020
).
187.
O.
Calderon
,
A. P.
Ginsberg
, and
L.
Ciabocchi
, “
Multidimensional assessment of pilot blended learning programs: Maximizing program effectiveness based on student and faculty feedback
,”
J. Asynchronous. Learn. Netw.
16
(
3
),
23
37
(
2012
), see https://files.eric.ed.gov/fulltext/EJ982679.pdf.
188.
S.
Guri-Rosenblit
, “
Eight paradoxes in the implementation process of e-learning in higher education
,”
Distances Saviors
2
(
4
),
155
179
(
2006
).
189.
K. Mac
Keogh
, “
National strategies for the promotion of on-line learning in higher education
,”
Eur. J. Educ.
36
(
2
),
223
236
(
2001
).
190.
G.
Mihhailova
, “
E-learning as internationalization strategy in higher education: Lecturer's and student's perspective
,”
Balt. J. Manag.
1
(
3
),
270
284
(
2006
).
191.
T.
Hatziapostolou
and
I.
Paraskakis
, “
Enhancing the impact of formative feedback on student learning through an online feedback system
,”
Electron. J. E-Learn.
8
(
2
),
111
122
(
2010
), see https://files.eric.ed.gov/fulltext/EJ895699.pdf.
192.
M.
Jara
and
H.
Mellar
, “
Quality enhancement for e-learning courses: The role of student feedback
,”
Comput. Educ.
54
(
3
),
709
714
(
2010
).
193.
S.
Watson
, “
Closing the feedback loop: Ensuring effective action from student feedback
,”
Tertiary Educ. Manag.
9
(
2
),
145
157
(
2003
).
194.
M. T.
Afzal
,
A.
Safdar
, and
M.
Ambreen
, “
Teachers perceptions and needs towards the use of e-learning in teaching of physics at secondary level
,”
Am. J. Educ. Res.
3
(
8
),
1045
1051
(
2015
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.