Modern mobile phones contain a three-axis microelectromechanical system (MEMS) gyroscope, capable of taking accurate measurements of the angular velocity along the three principal axes of the phone with a sampling rate of 100 Hz or better. If the phone is tossed in the air, then, neglecting air resistance, it is in free rotation (rotation in the absence of a torque) with respect to its centre of mass, and the phone's gyroscope can be used to record the rotational dynamics. This enables experimental investigation of free rotation. In this paper, we use a mobile phone to demonstrate the steady states for rotation of the phone about two of its principal axes, and the instability in rotation about the third corresponding to the intermediate moment of inertia. We also show the approximate conservation of angular momentum and rotational kinetic energy during motion in the air, and compare the data with numerical solution of Euler's equations for free rotation. Our results demonstrate the capability of smartphones for investigating free rotation, and should be of interest to college and university teachers developing “at home” physics labs for remote learning.

1.
J.
Kuhn
and
P.
Vogt
, “
Smartphones & Co. in physics education: Effects of learning with new media experimental tools in acoustics
,” in
Multidisciplinary Research on Teaching and Learning
, edited by
A.
Schnotz
,
A.
Kauertz
,
H.
Ludwig
,
A.
Müller
, and
J.
Pretsch
(
Palgrave Macmillan
,
London
,
2015
).
2.
K.
Hochberg
,
J.
Kuhn
, and
A.
Müller
, “
Using smartphones as experimental tools—Effects on interest, curiosity, and learning in physics education
,”
J. Sci. Edu. Tech.
27
,
385
403
(
2018
).
3.
S.
Becker
,
P.
Klein
, and
J.
Kuhn
, “
Video analysis on tablet computers to investigate effects of air resistance
,”
Phys. Teach.
54
(
7
),
440
441
(
2016
).
4.
S.
Becker
,
P.
Klein
,
A.
Göβling
, and
J.
Kuhn
, “
Investigating dynamic visualizations of multiple representations using mobile video analysis in physics lessons
,”
Z. Didaktik Nat.
26
,
123
142
(
2020
).
5.
S.
Becker
,
P.
Klein
,
A.
Göβling
, and
J.
Kuhn
, “
Using mobile devices to enhance inquiry-based learning processes
,”
Learn. Instr.
69
,
101350
(
2020
).
6.
K.
Hochberg
,
S.
Becker
,
M.
Louis
,
P.
Klein
, and
J.
Kuhn
, “
Using smartphones as experimental tools—A follow-up: cognitive effects by video analysis and reduction of cognitive load by multiple representations
,”
J. Sci. Edu. Tech.
29
(
2
),
303
317
(
2020
).
7.
J.
Bobroff
,
F.
Bouquet
, and
U.
Delabre
, “
Teaching experimental science in a time of social distancing,” The Conversation <
https://theconversation.com/teaching-experimental-science-in-a-time-of-social-distancing-139483>.
8.
K.
Wright
, “
Smartphone physics on the rise
,”
Physics
13
,
68
(
2020
), see <https://physics.aps.org/articles/v13/68>.
9.
iFixit
, “
iPhone 4 Gyroscope Teardown
”, <https://www.ifixit.com/Teardown/iPhone+4+Gyroscope+Teardown/3156>.
10.
Y.
Michalevsky
,
D.
Boneh
, and
G.
Nakibly
, “
Gyrophone: Recognizing speech from gyroscope signals
,” in
Proceedings of the 23rd USENIX Security Symposium
,
2014
, <https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-michalevsky.pdf>.
11.
P.
Vogt
and
J.
Kuhn
, “
Analyzing free fall with a smartphone acceleration sensor
,”
Phys. Teach.
50
,
182
183
(
2012
).
12.
M.
Berrada
,
J. A. H.
Littleton
, and
R. A.
Secco
, “
Smartphones and gravitational acceleration I: Overview
,”
Phys. Teach.
58
,
470
472
(
2020
).
13.
M.
Berrada
,
J. A. H.
Littleton
, and
R. A.
Secco
, “
Smartphones and gravitational acceleration II: Applications
,”
Phys. Teach.
58
,
473
476
(
2020
).
14.
M.
Patrinopolous
and
C.
Kefalis
, “
Angular velocity direct measurement and moment of inertia calculation of a rigid body using a smartphone
,”
Phys. Teach.
53
,
564
565
(
2015
).
15.
A.
Kaps
and
F.
Stallmach
, “
Tilting motion and the moment of inertia of the smartphone
,”
Phys. Teach.
58
,
216
217
(
2020
).
16.
I.
Salinas
,
M. H.
Gimenez
,
J. A.
Monsoriu
, and
J. A.
Sans
, “
Demonstration of the parallel axis theorem through a smartphone
,”
Phys. Teach.
57
,
340
341
(
2019
).
17.
P.
Vogt
and
J.
Kuhn
, “
Analyzing simple pendulum phenomena with a smartphone acceleration sensor
,”
Phys. Teach.
50
,
439
440
(
2012
).
18.
P.
Vogt
and
J.
Kuhn
, “
Analyzing radial acceleration with a smartphone acceleration sensor
,”
Phys. Teach.
51
,
182
183
(
2013
).
19.
K.
Hochberg
,
S.
Gröber
,
J.
Kuhn
, and
A.
Müuller
, “
The spinning disc: Studying radial acceleration and its damping process with smartphone acceleration sensors
,”
Phys. Educ.
49
,
137
140
(
2014
).
20.
A.
Shakur
and
J.
Kraft
, “
Measurement of Coriolis acceleration with a smartphone
,”
Phys. Teach.
54
,
288
290
(
2016
).
21.
L. D.
Landau
and
E. M.
Lifshitz
,
Mechanics
, 2nd ed. (
Pergamon Press
,
Oxford
,
1969
).
22.
H.
Goldstein
,
Classical Mechanics
, 2nd ed. (
Addison-Wesley
,
Reading, MA
,
1980
).
23.
H.
Murakami
,
O.
Rios
, and
T. J.
Impelluso
, “
A theoretical and numerical study of the Dzhanibekov and tennis racket phenomena
,”
J. Appl. Mech.
83
,
111006
(
2016
).
24.
L.
Van Damme
,
P.
Mardesić
, and
D.
Sugny
, “
The tennis racket effect in a three-dimensional rigid body
,”
Physica D
338
,
17
25
(
2017
).
25.
P.
Mardesić
,
G. J.
Gutierrez Guillen
,
L.
Van Damme
, and
D.
Sugny
, “
Geometric origin of the tennis racket effect
,”
Phys. Rev. Lett.
125
,
064301
(
2020
).
26.
See <https://www.youtube.com/watch?v=1n-HMSCDYtM> for a video illustrating the Dzhanibekov effect in zero gravity.
27.
P. M.
Trivailo
and
H.
Kojima
, “
Discovering method of control of the ‘Zhanibekov's effect’ and proposing its applications for the possible future space missions
,”
Trans. JSASS Aerosp. Tech. Jpn.
17
,
72
81
(
2019
).
28.
M.
Loth
,
C.
Gibbons
,
S.
Belaiter
, and
J. B.
Clarage
, “
Stable and unstable rotational dynamics of a smartphone
,”
Phys. Teach.
55
,
431
434
(
2017
).
29.
Available from <https://phyphox.org/> for information on the smartphone app phyphox.
30.
D.
Acheson
,
From Calculus to Chaos: An Introduction to Dynamics
(
Oxford U. P
.,
Oxford
,
1997
).
31.
See <https://support.apple.com/kb/sp768?locale=en_AU> for the technical specifications of the iPhone 8 Plus.
32.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes in C
, 2nd ed. (
Cambridge U. P
.,
New York
,
1992
).
33.
See <https://www.grc.nasa.gov/www/k-12/airplane/shaped.html> for information on the effects of shape on drag.
35.
P. J.
Dekker
,
L. A. G.
Eek
,
M. M.
Flapper
,
H. J. C.
Horstink
,
A. R.
Meulenkamp
, and
J.
van der Meulen
, “
Water bottle flipping physics
,”
Am. J. Phys.
86
,
733
739
(
2018
).
36.
See <https://www.youtube.com/watch?v=1VPfZ_XzisU> for a video explaining the Dzhanibekov or tennis racquet effect.
37.
See <https://www.youtube.com/watch?v=yFRPhi0jhGc> for a video discussing the physics of skateboard tricks.
38.
See <https://www.youtube.com/watch?v=vkMmbWYnBHg> for a demonstration of a successful skateboard flip around the intermediate axis.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.