Many different formalisms exist for computing the phase of a matter-wave interferometer. However, it can be challenging to develop physical intuition about what a particular interferometer is actually measuring or about whether a given classical measurement provides equivalent information. Here, we investigate the physical content of the interferometer phase through a series of thought experiments. In low-order potentials, a matter-wave interferometer with a single internal state provides the same information as a sum of position measurements of a classical test object. In high-order potentials, the interferometer phase becomes decoupled from the motion of the interferometer arms, and the phase contains information that cannot be obtained by any set of position measurements on the interferometer trajectory. This phase shift in a high-order potential fundamentally distinguishes matter-wave interferometers from classical measuring devices.

1.
R. P.
Feynman
,
R. B.
Leighton
, and
M.
Sands
,
The Feynman Lectures on Physics Volume III
(
Addison-Wesley
,
Reading, MA
,
1965
).
2.
B.
Schrinski
,
S.
Nimmrichter
, and
K.
Hornberger
, “
Quantum-classical hypothesis tests in matter-wave interferometry
,”
Phys. Rev. Res.
2
,
033034
(
2020
).
3.
P.
Asenbaum
,
C.
Overstreet
,
M.
Kim
,
J.
Curti
, and
M. A.
Kasevich
, “
Atom-interferometric test of the equivalence principle at the 10−12 level
,”
Phys. Rev. Lett.
125
,
191101
(
2020
)
4.
R. H.
Parker
,
C.
Yu
,
W.
Zhong
,
B.
Estey
, and
H.
Müller
, “
Measurement of the fine-structure constant as a test of the Standard Model
,”
Science
360
,
191
195
(
2018
).
5.
T. L.
Gustavson
,
A.
Landragin
, and
M. A.
Kasevich
, “
Rotation sensing with a dual atom-interferometer Sagnac gyroscope
,”
Classical Quantum Gravity
17
,
2385
2398
(
2000
).
6.
J. K.
Stockton
,
K.
Takase
, and
M. A.
Kasevich
, “
Absolute geodetic rotation measurement using atom interferometry
,”
Phys. Rev. Lett.
107
,
133001
(
2011
).
7.
J. M.
McGuirk
,
G. T.
Foster
,
J. B.
Fixler
,
M. J.
Snadden
, and
M. A.
Kasevich
, “
Sensitive absolute-gravity gradiometry using atom interferometry
,”
Phys. Rev. A
65
,
033608
(
2002
).
8.
P.
Asenbaum
,
C.
Overstreet
,
T.
Kovachy
,
D. D.
Brown
,
J. M.
Hogan
, and
M. A.
Kasevich
, “
Phase shift in an atom interferometer due to spacetime curvature across its wave function
,”
Phys. Rev. Lett.
118
,
183602
(
2017
).
9.
D.
Aguilera
et al, “
STE-QUEST - Test of the universality of free fall using cold atom interferometry
,”
Classical Quantum Gravity
31
,
115010
(
2014
).
10.
B.
Canuel
et al, “
Exploring gravity with the MIGA large scale atom interferometer
,”
Sci. Rep.
8
,
14064
(
2018
).
11.
J.
Coleman
, “
MAGIS-100 at Fermilab
,” in Proceedings of Science, ICHEP 2018 (
2019
).
12.
M.
Born
and
E.
Wolf
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
, 7th ed. (
Cambridge U. P
.,
Cambridge
,
1999
).
13.

The action S of a trajectory x(t) in the time interval {t0,tf} is defined to be S=t0tfL(x,ẋ,t)+dt, where L is the Lagrangian of the system. Physically, the action is proportional to the proper time evolved along the trajectory (Ref. 21).

14.
C.
Antoine
and
C. J.
Bordé
, “
Quantum theory of atomic clocks and gravito-inertial sensors: An update
,”
J. Opt. B: Quantum Semiclassical Opt.
5
,
S199
S207
(
2003
).
15.
C.
Antoine
, “
Matter wave beam splitters in gravito-inertial and trapping potentials: Generalized ttt scheme for atom interferometry
,”
Appl. Phys. B
84
,
585
597
(
2006
).
16.
B.
Dubetsky
and
M.
Kasevich
, “
Atom interferometer as a selective sensor of rotation or gravity
,”
Phys. Rev. A
74
,
023615
(
2006
).
17.
E.
Giese
,
W.
Zeller
,
S.
Kleinert
,
M.
Meister
,
V.
Tamma
,
A.
Roura
, and
W. P.
Schleich
, “
The interface of gravity and quantum mechanics illuminated by Wigner phase space
,” in
Proceedings of the International School of Physics “Enrico Fermi” on Atom Interferometry
, edited by
G.
Tino
and
M. A.
Kasevich
(
IOS Press
,
Amsterdam
,
2014
); e-print arXiv:1402.0963v1.
18.
S.
Kleinert
,
E.
Kajari
,
A.
Roura
, and
W. P.
Schleich
, “
Representation-free description of light-pulse atom interferometry including non-inertial effects
,”
Phys. Rep.
605
,
1
50
(
2015
).
19.
A.
Bertoldi
,
F.
Minardi
, and
M.
Prevedelli
, “
Phase shift in atom interferometers: Corrections for nonquadratic potentials and finite-duration laser pulses
,”
Phys. Rev. A
99
,
033619
(
2019
).
20.
J. M.
Hogan
,
D. M. S.
Johnson
, and
M. A.
Kasevich
, “
Light-pulse atom interferometry
,” in
Proceedings of the International School of Physics “Enrico Fermi” on Atom Optics and Space Physics
, edited by
E.
Arimondo
,
W.
Ertmer
, and
W. P.
Schleich
(
IOS Press
,
Amsterdam
,
2009
), pp.
411
447
; e-print arXiv:0806.3261.
21.
S.
Dimopoulos
,
P.
Graham
,
J.
Hogan
, and
M.
Kasevich
, “
General relativistic effects in atom interferometry
,”
Phys. Rev. D
78
,
042003
(
2008
).
22.
A.
Roura
, “
Gravitational redshift in quantum-clock interferometry
,”
Phys. Rev. X
10
,
021014
(
2020
).
23.
R.
Colella
,
A. W.
Overhauser
, and
S. A.
Werner
, “
Observation of Gravitationally Induced Quantum Interference
,”
Phys. Rev. Lett.
34
,
1472
1474
(
1975
).
24.
D. W.
Keith
,
C. R.
Ekstrom
,
Q. A.
Turchette
, and
D. E.
Pritchard
, “
An interferometer for atoms
,”
Phys. Rev. Lett.
66
,
2693
2696
(
1991
).
25.
Y.
Shin
,
M.
Saba
,
T. A.
Pasquini
,
W.
Ketterle
,
D. E.
Pritchard
, and
A. E.
Leanhardt
, “
Atom interferometry with Bose-Einstein condensates in a double-well potential
,”
Phys. Rev. Lett.
92
,
050405
(
2004
).
26.
Y.-J.
Wang
,
D. Z.
Anderson
,
V. M.
Bright
,
E. A.
Cornell
,
Q.
Diot
,
T.
Kishimoto
,
M.
Prentiss
,
R. A.
Saravanan
,
S. R.
Segal
, and
S.
Wu
, “
Atom Michelson interferometer on a chip using a Bose-Einstein condensate
,”
Phys. Rev. Lett.
94
,
090405
(
2005
).
27.
V.
Xu
,
M.
Jaffe
,
C. D.
Panda
,
S. L.
Kristensen
,
L. W.
Clark
, and
H.
Müller
, “
Probing gravity by holding atoms for 20 seconds
,”
Science
366
,
745
749
(
2019
).
28.
M.
Kasevich
and
S.
Chu
, “
Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer
,”
Appl. Phys. B
54
,
321
332
(
1992
).
29.
P. J.
Martin
,
B. G.
Oldaker
,
A. H.
Miklich
, and
D. E.
Pritchard
, “
Bragg scattering of atoms from a standing light wave
,”
Phys. Rev. Lett.
60
,
515
518
(
1988
).
30.
M.
Kasevich
and
S.
Chu
, “
Atomic interferometry using stimulated Raman transitions
,”
Phys. Rev. Lett.
67
,
181
184
(
1991
).
31.
H.
Müller
,
S.-W.
Chiow
, and
S.
Chu
, “
Atom-wave diffraction between the Raman-Nath and the Bragg regime: Effective Rabi frequency, losses, and phase shifts
,”
Phys. Rev. A
77
,
023609
(
2008
).
32.

Unlike the classical accelerometer, the interferometer does not provide information about the three position measurements individually.

33.
T.
Kovachy
,
P.
Asenbaum
,
C.
Overstreet
,
C. A.
Donnelly
,
S. M.
Dickerson
,
A.
Sugarbaker
,
J. M.
Hogan
, and
M. A.
Kasevich
, “
Quantum superposition at the half-metre scale
,”
Nature
528
,
530
533
(
2015
).
34.
In practice, the semiclassical approximation is typically valid if the interferometer arms are freely falling during the drift time, but the approximation can be violated in guided interferometers that use optical lattices as guiding potentials
(Ref. 27).
35.

It is worth emphasizing that there is no fundamental physical difference between “open” interferometers and “closed” interferometers (in which the central trajectories of the two arms overlap at the time of the final beamsplitter). In order to observe first-order coherence in a particular region, the probability density |ψ|2 must have the form |ψ|2|ψ1+ψ2|2=|ψ1|2+|ψ2|2+ψ1*ψ2+ψ1ψ2*. Here, ψ1 and ψ2 represent the amplitudes of the wavefunction on two different trajectories, and the phenomenon of interference is represented by the terms ψ1*ψ2 and ψ1ψ2*. The interference terms are zero unless the region contains nonzero amplitude from both trajectories. Physically speaking, every interferometer is closed. The notion of an “open” interferometer is useful only insofar as it indicates the parametric dependence of physical observables, e.g., the dependence of the interferometer phase on initial conditions.

36.

To be precise, ϕ¯sep cancels the boundary term that appears when ϕprop is integrated by parts. See Sec. V for further details.

37.
B.
Dubetsky
,
S. B.
Libby
, and
P.
Berman
, “
Atom interferometry in the presence of an external test mass
,”
Atoms
4
,
14
(
2016
); e-print arXiv:1601.00355.
38.

This approximation, which is used to simplify the calculation, is not necessary for the result. The same result is obtained if the light pulses occur over finite intervals (Ref. 15) as long as the motion of the arms during the light pulses is taken into account.

39.
C. J.
Bordé
, “
Atomic interferometry with internal state labelling
,”
Phys. Lett. A
140
,
10
12
(
1989
).
40.
A. D.
Cronin
,
J.
Schmiedmayer
, and
D. E.
Pritchard
, “
Optics and interferometry with atoms and molecules
,”
Rev. Mod. Phys.
81
,
1051
1129
(
2009
).
41.
S.-Y.
Lan
,
P.-C.
Kuan
,
B.
Estey
,
D.
English
,
J. M.
Brown
,
M. A.
Hohensee
, and
H.
Müller
, “
A clock directly linking time to a particle's mass
,”
Science
339
,
554
557
(
2013
).
42.
E.
Di Casola
,
S.
Liberati
, and
S.
Sonego
, “
Nonequivalence of equivalence principles
,”
Am. J. Phys.
83
,
39
46
(
2015
); e-print arXiv:1310.7426.
43.
Y.
Aharonov
and
D.
Bohm
, “
Electromagnetic potentials in the quantum theory
,”
Phys. Rev.
123
,
1511
1524
(
1959
).
44.
R. G.
Chambers
, “
Shift of an electron interference pattern by enclosed magnetic flux
,”
Phys. Rev. Lett.
5
,
3
5
(
1960
).
45.
S. A.
Werner
and
A. G.
Klein
, “
Observation of Aharonov – Bohm effects by neutron interferometry
,”
J. Phys. A: Math. Theor.
43
,
354006
(
2010
).
46.
M. A.
Hohensee
,
B.
Estey
,
P.
Hamilton
,
A.
Zeilinger
, and
H.
Müller
, “
Force-free gravitational redshift: Proposed gravitational Aharonov-Bohm experiment
,”
Phys. Rev. Lett.
108
,
230404
(
2012
).
47.
J.
Anandan
, “
Curvature effects in interferometry
,”
Phys. Rev. D
30
,
1615
1624
(
1984
).
48.
S. A.
Werner
, “
Gravitational, rotational and topological quantum phase shifts in neutron interferometry
,”
Classical Quantum Gravity
11
,
A207
A226
(
1994
).
49.
P.
Storey
and
C.
Cohen-Tannoudji
, “
The Feynman path integral approach to atomic interferometry: A tutorial
,”
J. Phys. II (France)
4
,
1999
2027
(
1994
).
50.
P.
Wolf
,
L.
Blanchet
,
C. J.
Bordé
,
S.
Reynaud
,
C.
Salomon
, and
C.
Cohen-Tannoudji
, “
Does an atom interferometer test the gravitational redshift at the Compton frequency?
,”
Classical Quantum Gravity
28
,
145017
(
2011
).
51.
M.
Zimmermann
,
M. A.
Efremov
,
A.
Roura
,
W. P.
Schleich
,
S. A.
DeSavage
,
J. P.
Davis
,
A.
Srinivasan
,
F. A.
Narducci
,
S. A.
Werner
, and
E. M.
Rasel
, “
T3-interferometer for atoms
,”
Appl. Phys. B
123
,
102
(
2017
).
52.
A.
Roura
,
W.
Zeller
, and
W. P.
Schleich
, “
Overcoming loss of contrast in atom interferometry due to gravity gradients
,”
New J. Phys.
16
,
123012
(
2014
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.