In this work, we present a master equation approach to simulating DC transport through single electron transistors and quantum dots suitable for an upper-division undergraduate computational physics project. After introducing the basic theory describing transport through quantum dots, we present a simulation of the simple case of a metallic dot including effects due to the finite temperature of the leads. Building on this example, we simulate published data with orbital and spin states. We envision students building on these simulations to replicate other data in the published literature. Projects of this type would be suitable for an undergraduate independent study or computational project and will give students a strong introduction to the topic of transport through quantum dots without the need for expensive cryogenic and electrical measurement systems or device fabrication necessary for experimental work.

1.
B. I.
Halperin
,
A.
Stern
,
Y.
Oreg
,
J. N. H. J.
Cremers
,
J. A.
Folk
, and
C. M.
Marcus
, “
Spin-orbit effects in a gaas quantum dot in a parallel magnetic field
,”
Phys. Rev. Lett.
86
,
2106
2109
(
2001
).
2.
M. T.
Björk
,
A.
Fuhrer
,
A. E.
Hansen
,
M. W.
Larsson
,
L. E.
Fröberg
, and
L.
Samuelson
, “
Tunable effective g factor in InAs nanowire quantum dots
,”
Phys. Rev. B
72
,
201307
(
2005
).
3.
M.
Ciorga
,
A. S.
Sachrajda
,
P.
Hawrylak
,
C.
Gould
,
P.
Zawadzki
,
S.
Jullian
,
Y.
Feng
, and
Z.
Wasilewski
, “
Addition spectrum of a lateral dot from coulomb and spin-blockade spectroscopy
,”
Phys. Rev. B
61
,
R16315
R16318
(
2000
).
4.
D.
Goldhaber-Gordon
,
H.
Shtrikman
,
D.
Malahu
,
D.
Abusch-Magder
,
U.
Meirav
, and
M. A.
Kastner
, “
Kondo effect in a single-electron transistor
,”
Nature
391
(
6663
),
156
159
(
1998
).
5.
K.
Ono
,
D. G.
Austing
,
Y.
Tokura
, and
S.
Tarucha
, “
Current rectification by Pauli exclusion in a weakly coupled double quantum dot system
,”
Science
297
(
5585
),
1313
1317
(
2002
).
6.
H.
Bohuslavskyi
,
D.
Kotekar-Patil
,
R.
Maurand
,
A.
Corna
,
S.
Barraud
,
L.
Bourdet
,
L.
Hutin
,
Y.-M.
Niquet
,
X.
Jehl
,
S.
De Franceschi
,
M.
Vinet
, and
M.
Sanquer
, “
Pauli blockade in a few-hole PMOS double quantum dot limited by spin-orbit interaction
,”
Appl. Phys. Lett.
109
(
19
),
193101
(
2016
).
7.
M.
Veldhorst
,
H.
Eenink
,
C.
Yang
, and
A.
Dzurak
, “
Silicon CMOS architecture for a spin-based quantum computer
,”
Nat. Commun.
8
,
1–8
(
2017
).
8.
C. H.
Yang
,
R.
Leon
,
J. C. C.
Hwang
,
A.
Saraiva
,
T.
Tanttu
,
W.
Huang
,
J.
Camirand Lemyre
,
K. W.
Chan
,
K. Y.
Tan
,
F. E.
Hudson
,
K. M.
Itoh
,
A.
Morello
,
M.
Pioro-Larière
, and
A. S.
Dzurak
, “
Operation of a silicon quantum processor unit cell above one kelvin
,”
Nature
580
,
350
354
(
2020
).
9.
J.
von Delft
and
D.
Ralph
, “
Spectroscopy of discrete energy levels in ultrasmall metallic grains
,”
Phys. Rep.
345
(
2
),
61
173
(
2001
).
10.
R.
Hanson
,
L. P.
Kouwenhoven
,
J. R.
Petta
,
S.
Tarucha
, and
L. M. K.
Vandersypen
, “
Spins in few-electron quantum dots
,”
Rev. Mod. Phys.
79
,
1217
1265
(
2007
).
11.
L. P.
Kouwenhoven
,
D. G.
Austing
, and
S.
Tarucha
, “
Few-electron quantum dots
,”
Rep. Prog. Phys.
64
(
6
),
701
736
(
2001
).
12.
L. P.
Kouwenhoven
,
C. M.
Marcus
,
P. L.
Mceuen
,
S.
Tarucha
,
R. M.
Westervelt
, and
N. S.
Wingreen
, “
Electron transport in quantum dots
,”
Mesoscopic Electron Transport
(
Advanced Study Institute on Mesoscopic Electron Transport
,
Springer, Dordrecht
,
1997
).
13.
W. G.
van der Wiel
,
S.
De Franceschi
,
J. M.
Elzerman
,
T.
Fujisawa
,
S.
Tarucha
, and
L. P.
Kouwenhoven
, “
Electron transport through double quantum dots
,”
Rev. Mod. Phys.
75
,
1
22
(
2002
).
14.
D. P.
DiVincenzo
,
D.
Bacon
,
J.
Kempe
,
G.
Burkard
, and
K. B.
Whaley
, “
Single-electron transistors
,”
Phys. World
11
,
29
33
(
1998
).
15.
L. P.
Kouwenhoven
and
C. M.
Marcus
, “
Quantum dots
,”
Phys. World
11
,
35
38
(
1998
).
16.
M.
Kastner
, “
Artificial atoms
,”
Phys. Today
46
(
1
),
24
31
(
1993
).
17.
M.
Tinkham
, “
Coulomb blockade and an electron in a mesoscopic box
,”
Am. J. Phys.
64
(
3
),
343
347
(
1996
).
18.
For the remainder of this paper, we will refer to the charge carriers as electrons; however, it should be noted that it is
straightforward to consider the case where the charge carriers are holes.
19.
For simplicity, we have ignored compensation charges on the dot due to charges in the environment surrounding the dot (from donors for example). One can include this by simply replacing N with (NN0), where N0 is the compensation charge on the dot.
20.
S.
Datta
,
Quantum Transport Atom to Transistor
(
Cambridge U. P.
,
Cambridge
,
2005
).
21.
Although the quantum states are arranged in order of energy, the vertical spacing has no scale as we are simply keeping track of possible transitions not energies.
22.
For example with the nuclear spins of the lattice.
23.
R.
Hanson
,
B.
Witkamp
,
L. M. K.
Vandersypen
,
L. H. W.
van Beveren
,
J. M.
Elzerman
, and
L. P.
Kouwenhoven
, “
Zeeman energy and spin relaxation in a one-electron quantum dot
,”
Phys. Rev. Lett.
91
,
196802
(
2003
).
24.
A. C.
Johnson
,
J. R.
Petta
,
J. M.
Taylor
,
A.
Yacoby
,
M. D.
Lukin
,
C. M.
Marcus
,
M. P.
Hanson
, and
A. C.
Gossard
, “
Singlet-triplet spin relaxation via nuclei in a double quantum dot
,”
Nature
435
,
925
928
(
2005
).
25.
J.
Weis
,
R. J.
Haug
,
K. V.
Klitzing
, and
K.
Ploog
, “
Competing channels in single-electron tunneling through a quantum dot
,”
Phys. Rev. Lett.
71
,
4019
4022
(
1993
).
26.
S.
Lindemann
,
T.
Ihn
,
T.
Heinzel
,
W.
Zwerger
,
K.
Ensslin
,
K.
Maranowski
, and
A. C.
Gossard
, “
Stability of spin states in quantum dots
,”
Phys. Rev. B
66
,
195314
(
2002
).
27.
H.
Büch
,
M.
Fuechsle
,
W.
Baker
,
M. G.
House
, and
M. Y.
Simmons
, “
Quantum dot spectroscopy using a single phosphorus donor
,”
Phys. Rev. B
92
,
235309
(
2015
).
28.
C. H.
Yang
,
W. H.
Lim
,
N. S.
Lai
,
A.
Rossi
,
A.
Morello
, and
A. S.
Dzurak
, “
Orbital and valley state spectra of a few-electron silicon quantum dot
,”
Phys. Rev. B
86
,
115319
(
2012
).
29.
M. G.
Borselli
,
R. S.
Ross
,
A. A.
Kiselev
,
E. T.
Croke
,
K. S.
Holabird
,
P. W.
Deelman
,
L. D.
Warren
,
I.
Alvarado-Rodriguez
,
I.
Milosavljevic
,
F. C.
Ku
,
W. S.
Wong
,
A. E.
Schmitz
,
M.
Sokolich
,
M. F.
Gyure
, and
A. T.
Hunter
, “
Measurement of valley splitting in high-symmetry Si/SiGe quantum dots
,”
Appl. Phys. Lett.
98
(
12
),
123118
(
2011
).
30.
C. C.
Escott
,
F. A.
Zwanenburg
, and
A.
Morello
, “
Resonant tunnelling features in quantum dots
,”
Nanotechnology
21
(
27
),
274018
(
2010
).
31.
See supplementary material at https://doi.org/10.1119/10.0002404 for the python code used for the simulations presented in this manuscript.

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.