We discuss a simple experiment investigating the shrinkage of surface soap bubbles sitting on a thin solid plate with a circular orifice located under the apex of the bubble. We identify three different shrinking regimes, the occurrence of which depends on a combination of key parameters that include the ratio between initial bubble and orifice sizes and physicochemical properties of the fluid system. For low-viscosity liquids and/or large ratios, a bubble remains quasi-hemispherical as shrinking proceeds. In contrast, for liquids with sufficiently large viscosities and/or small geometric ratios, a bubble seeks the shape of a spherical cap while the air inside it escapes through the orifice. In this case, shrinking proceeds with a bubble foot that either recedes over time or does not move for the largest viscosities and/or smallest ratios. We use basic physical arguments to rationalize the three identified regimes and to explain the shrinking dynamics. Specifically, this model which captures observations and measurements is based on Bernoulli's principle for the air flow, volume conservation, and a friction law that accounts for viscous dissipation at the moving bubble foot.
REFERENCES
In the case of a spherical drop of radius R, the well-known expression of the Laplace pressure is . For bubbles, the factor 2 in the overpressure that appears in the Bernoulli's relation is due to the presence of two liquid-gas interfaces as illustrated in Fig. 4.