In recent times, spatial light modulators have become a common tool in optics laboratories as well as industrial environments for shaping the spatial structure of a light beam. Although these devices are often easy to use, their high cost has limited their use in many undergraduate laboratories. However, in recent years the progress in developing more cost-effective projectors has led to affordable spatial light modulators in the form of so-called Digital Micromirror Devices (DMD). This reduction in price, as well as their simple employment, make such devices increasingly suitable for use in undergraduate instructional laboratories to demonstrate optical effects and the shaping of light fields. Here, we show one of the most cost-effective ways to make a DMD available, namely, turning a projector evaluation module into a computer-controlled spatial light modulator. We explain the underlying functioning and how this low-cost spatial light modulator can be used in undergraduate laboratories. We further characterize the efficiency of the device for the most commonly used laser wavelengths and demonstrate various exemplary optics experiments suitable for undergraduate laboratories ranging from single and multi-slit diffraction to optical Fourier transformations. Finally, we show that by using amplitude holography, the device can generate transverse spatial modes, e.g., Laguerre-Gaussian beam, which are one of the most commonly used spatially structured beams.

1.
A. M.
Weiner
, “
Femtosecond pulse shaping using spatial light modulators
,”
Rev. Sci. Instrum.
71
,
1929
1960
(
2000
).
2.
K.
Dholakia
and
W.
Lee
, “
Optical trapping takes shape: The use of structured light fields
,”
Adv. At. Mol. Opt. Phys.
56
,
261
337
(
2008
).
3.
A. E.
Willner
,
H.
Huang
,
Y.
Yan
,
Y.
Ren
,
N.
Ahmed
,
G.
Xie
,
C.
Bao
,
L.
Li
,
Y.
Cao
,
Z.
Zhao
,
J.
Wang
,
M. P. J.
Lavery
,
M.
Tur
,
S.
Ramachandran
,
A. F.
Molisch
,
N.
Ashrafi
, and
S.
Ashrafi
, “
Optical communications using orbital angular momentum beams
,”
Adv. Opt. Photonics
7
,
66
106
(
2015
).
4.
H.
Rubinsztein-Dunlop
,
A.
Forbes
,
M. V.
Berry
,
M. R.
Dennis
,
D. L.
Andrews
,
M.
Mansuripur
,
C.
Denz
,
C.
Alpmann
,
P.
Banzer
,
T.
Bauer
,
E.
Karimi
,
L.
Marrucci
,
M.
Padgett
,
M.
Ritsch-Marte
,
N. M.
Litchinitser
,
N. P.
Bigelow
,
C.
Rosales-Guzmán
,
A.
Belmonte
,
J. P.
Torres
,
T. W.
Neely
,
M.
Baker
,
R.
Gordon
,
A. B.
Stilgoe
,
J.
Romero
,
A. G.
White
,
R.
Fickler
,
A. E.
Willner
,
G.
Xie
,
B.
McMorran
, and
A. M.
Weiner
, “
Roadmap on structured light
,”
J. Opt.
19
,
013001
(
2017
).
5.
M.
Erhard
,
R.
Fickler
,
M.
Krenn
, and
A.
Zeilinger
, “
Twisted photons: New quantum perspectives in high dimensions
,”
Light: Sci. Appl.
7
,
17146
(
2018
).
6.
A.
Forbes
,
A.
Dudley
, and
M.
McLaren
, “
Creation and detection of optical modes with spatial light modulators
,”
Adv. Opt. Photonics
8
,
200
227
(
2016
).
7.
C.
Rosales-Guzmán
and
A.
Forbes
,
How to Shape Light with Spatial Light Modulators
(
SPIE Digital Library
,
Washington
,
2017
).
8.
M.
Padgett
,
J.
Arlt
,
N.
Simpson
, and
L.
Allen
, “
An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser modes
,”
Am. J. Phys.
64
,
77
82
(
1996
).
9.
B.
Boruah
, “
Dynamic manipulation of a laser beam using a liquid crystal spatial light modulator
,”
Am. J. Phys.
77
,
331
336
(
2009
).
10.
J. A.
Jones
,
A. J.
D'Addario
,
B. L.
Rojec
,
G.
Milione
, and
E. J.
Galvez
, “
The Poincaré-sphere approach to polarization: Formalism and new labs with Poincaré beams
,”
Am. J. Phys.
84
,
822
835
(
2016
).
11.
S.
Scholes
,
R.
Kara
,
J.
Pinnell
,
V.
Rodríguez-Fajardo
, and
A.
Forbes
, “
Structured light with digital micromirror devices: A guide to best practice
,”
Opt. Eng.
59
, 0
41202
(
2019
).
12.
D.
Huang
,
H.
Timmers
,
A.
Roberts
,
N.
Shivaram
, and
A. S.
Sandhu
, “
A low-cost spatial light modulator for use in undergraduate and graduate optics labs
,”
Am. J. Phys.
80
,
211–215
(
2012
).
13.
J. B.
Sampsell
, “
Digital micromirror device and its application to projection displays
,”
J. Vac. Sci. Technol. B
12
,
3242
3246
(
1994
).
14.
B.
Black
, “
BeagleBone Black
,” (
2020
). <https://beagleboard.org/black>.
15.
T. Instruments
, “
DLP® LightCrafterTM Display 2000 Evaluation Module
” (
2020
). <https://www.ti.com/tool/DLPDLCR2000EVM>.
17.
E. J.
Galvez
, “
Gaussian beams in the optics course
,”
Am. J. Phys.
74
,
355
361
(
2006
).
18.
T. Instruments
, “
DLP2000
” (
2020
). <https://www.ti.com/product/DLP2000>.
19.
T.
Instruments
, “
DLP Pico Display overview
” (
2020
). <https://www.ti.com/dlp-chip/display-and-projection/pico-chipsets/overview.html>.
20.
M.
Mirhosseini
,
O. S.
Magana-Loaiza
,
C.
Chen
,
B.
Rodenburg
,
M.
Malik
, and
R. W.
Boyd
, “
Rapid generation of light beams carrying orbital angular momentum
,”
Opt. Express
21
,
30196
30203
(
2013
).
21.
W.-H.
Lee
, “
Binary computer-generated holograms
,”
Appl. Opt.
18
,
3661
3669
(
1979
).
22.
T.-C.
Poon
and
T.
Kim
,
Engineering Optics with MATLAB
(
World Scientific Publishing Company
,
Singapore
,
2017
).
23.
J.
Lee Rodgers
and
W. A.
Nicewander
, “
Thirteen ways to look at the correlation coefficient
,”
Am. Statistician
42
,
59
66
(
1988
).
24.
J. W.
Goodman
,
Introduction to Fourier Optics
(
Roberts and Company Publishers
,
Colorado
,
2005
).
25.
E.
Hecht
,
Optics
, 5th ed. (
Pearson Education
,
New York
,
2002
).
26.
A.
Jesacher
,
A.
Schwaighofer
,
S.
Fürhapter
,
C.
Maurer
,
S.
Bernet
, and
M.
Ritsch-Marte
, “
Wavefront correction of spatial light modulators using an optical vortex image
,”
Opt. Express
15
,
5801
5808
(
2007
).
27.
L.
Allen
,
M. W.
Beijersbergen
,
R.
Spreeuw
, and
J.
Woerdman
, “
Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes
,”
Phys. Rev. A
45
,
8185–8189
(
1992
).
28.
R.
Fickler
,
G.
Campbell
,
B.
Buchler
,
P. K.
Lam
, and
A.
Zeilinger
, “
Quantum entanglement of angular momentum states with quantum numbers up to 10,010
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
13642
13647
(
2016
).
29.
A. V.
Carpentier
,
H.
Michinel
,
J. R.
Salgueiro
, and
D.
Olivieri
, “
Making optical vortices with computer-generated holograms
,”
Am. J. Phys.
76
,
916
921
(
2008
).
30.
V.
Lerner
,
D.
Shwa
,
Y.
Drori
, and
N.
Katz
, “
Shaping Laguerre-Gaussian laser modes with binary gratings using a digital micromirror device
,”
Opt. Lett.
37
,
4826
4828
(
2012
).
31.
M.
Beijersbergen
,
L.
Allen
,
H.
van der Veen
, and
J.
Woerdman
, “
Astigmatic laser mode converters and transfer of orbital angular momentum
,”
Opt. Commun.
96
,
123–132
(
1993
).
32.
J. E.
Curtis
and
D. G.
Grier
, “
Structure of optical vortices
,”
Phys. Rev. Lett.
90
,
133901
(
2003
).
33.
See supplementary material at https://doi.org/10.1119/10.0002365 for MATLAB codes to generate the diffraction patterns described in  Appendix C and discussed in the manuscript in Secs. III D, III F, and III G.

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.