Synchronization plays an important role in many physical processes. We discuss synchronization in a molecular dynamics simulation of a single particle moving through a viscous liquid while being driven across a washboard potential energy landscape. Our results show many dynamical patterns as the landscape and driving force are altered. For certain conditions, the particle's velocity and location are synchronized or phase-locked and form closed orbits in phase space. Quasi-periodic motion is common, for which the dynamical center of motion shifts the phase space orbit. By isolating synchronized motion in simulations and table-top experiments, we can study complex natural behaviors important to many physical processes.
REFERENCES
1.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
, Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge U. P
.,
Cambridge
, 2003
).2.
K.
Okamoto
,
A.
Kijima
,
Y.
Umeno
, and
H.
Shima
, “
Synchronization in flickering of three-coupled candle flames
,” Sci. Rep.
6
, 36145
–36155
(2016
).3.
T.
Arane
,
A. K. R.
Musalem
, and
M.
Fridman
, “
Coupling between two singing wineglasses
,” Am. J. Phys.
77
, 1066
–1067
(2009
).4.
J.
Jia
,
Z.
Song
,
W.
Liu
,
J.
Kurths
, and
J.
Xiao
, “
Experimental study of the triplet synchronization of coupled nonidentical mechanical metronomes
,” Sci. Rep.
5
, 17008
–17020
(2015
).5.
S.
Portugal
,
T.
Hubel
,
J.
Fritz
,
S.
Heese
,
D.
Trobe
,
B.
Voelkl
,
S.
Hailes
,
A. M.
Wilson
, and
J. R.
Usherwood
, “
Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight
,” Nature
505
, 399
–402
(2014
).6.
I.
Aihara
,
T.
Mizumoto
,
T.
Otsuka
,
H.
Awano
,
K.
Nagira
,
H. G.
Okuno
, and
K.
Aihara
, “
Spatio-temporal dynamics in collective frog choruses examined by mathematical modeling and field observations
,” Sci. Rep.
4
, 3891
–3899
(2014
).7.
P.
Tranchant
,
D. T.
Vuvan
, and
I.
Peretz
, “
Keeping the beat: A large sample study of bouncing and clapping to music
,” PLoS ONE
11
(7
), e0160178
(2016
).8.
G.
Martin Hall
,
Sonya
Bahar
, and
Daniel J.
Gauthier
, “
Prevalence of rate-dependent behaviors in cardiac muscle
,” Phys. Rev. Lett.
82
, 2995
–2998
(1999
).9.
W.
Singer
, “
Striving for coherence
,” Nature
397
, 391
–393
(1999
).10.
M.
Bennett
,
M. F.
Schatz
,
H.
Rockwood
, and
K.
Wiesenfeld
, “
Huygens’ clocks
,” Proc. Roy. Soc. A
458
, 563
–579
(2002
).11.
M. P. N.
Juniper
,
A. V.
Straube
,
R.
Besseling
,
D. G. A. L.
Aarts
, and
R. P. A.
Dullens
, “
Microscopic dynamics of synchronization in driven colloids
,” Nat. Commun.
6
, 7187
–7194
(2015
).12.
M. P. N.
Juniper
,
U.
Zimmermann
,
A. V.
Straube
,
R.
Besseling
,
D. G. A. L.
Aarts
,
H.
Löwen
, and
R. P. A.
Dullens
, “
Dynamic mode locking in a driven colloidal system: Experiments and theory
,” New J. Phys.
19
(1
), 013010
(2017
).13.
A.
Ashkin
, “
Optical trapping and manipulation of neutral particles using lasers
,” Proc. Natl. Acad. Sci. U. S. A.
94
, 4853
–4860
(1997
).14.
D. G.
Grier
, “
A revolution in optical manipulation
,” Nature
424
, 810
–816
(2003
).15.
A.
Pertsinidis
and
X.
Ling
, “
Equilibrium configurations and energetics of point defects in two-dimensional colloidal crystals
,” Phys Rev. Lett.
87
, 098303
(2001
).16.
C.
Reichhardt
and
C. J.
Olson Reichhardt
, “
Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: A review
,” Rep. Prog. Phys.
80
, 026501
(2017
).17.
C.
Reichhardt
and
C. J. O.
Reichhardt
, “
Shapiro steps for skyrmion motion on a washboard potential with longitudinal and transverse ac drives
,” Phys. Rev. B
92
(22
), 224432
(2015
).18.
E. M.
Purcell
, “
Life at low Reynolds numbers
,” Am. J. Phys.
45
, 3
–11
(1977
).19.
C.
Reichhardt
,
R. T.
Scalettar
,
G. T.
Zimányi
, and
N.
Grønbech-Jensen
, “
Phase-locking of vortex lattices interacting with periodic pinning
,” Phys. Rev. B
61
, R11914
(2000
).20.
P.
Bak
, “
The devil’s staircase
,” Phys. Today
39
(12
), 38
–45
(1986
).21.
S.
Shapiro
, “
Josephson currents in superconducting tunneling: The effect of microwaves and other observations
,” Phys. Rev. Lett.
11
, 80
–82
(1963
).22.
A. A.
Golubov
,
M. Yu.
Kupriyanov
, and
E.
Ilìchev
, “
The current-phase relation in Josephson junctions
,” Rev. Mod. Phys.
76
, 411
–469
(2004
).23.
See supplementary material at https://www.scitation.org/doi/suppl/10.1119/10.0005037 for the molecular dynamics code to generate the figures and solve the problems and <https://github.com/mcddanielle/AJP_project/>.
24.
M.
Newman
, Computational Physics
(
CreateSpace Independent Publishing Platform
,
South Carolina
, 2012
).25.
26.
G.
Volpe
and
G.
Volpe
, “
Simulation of a Brownian particle in an optical trap
,” Am. J. Phys.
81
(3
), 224
–230
(2013
).27.
IAPWS R12-08
, “
Release on the IAPWS formulation 2008 for the viscosity of ordinary water substance
, September 2008
, <http://www.iapws.org/relguide/viscosity.html>.28.
A.
Einstein
, Investigations on the Theory of the Brownian Movement
(
Dover Publications
,
New York
, 1956
).29.
C. R.
Harris
,
K. J.
Millman
,
S. J.
van der Walt
et al, “
Array programming with NumPy
,” Nature
585
, 357
–362
(2020
).30.
S. P.
Benz
,
M. S.
Rzchowski
,
M.
Tinkham
, and
C. J.
Lobb
, “
Fractional giant Shapiro steps and spatially correlated phase motion in 2D Josephson arrays
,” Phys. Rev. Lett.
64
, 693
–696
(1990
);
[PubMed]
D.
Domínguez
and
J. V.
José
, “
Giant Shapiro steps with screening currents
,” Phys. Rev. Lett.
69
, 514
–517
(1992
).
[PubMed]
© 2021 Author(s). Published under an exclusive license by American Association of Physics Teachers.
2021
Author(s)
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.