We describe a simple method to experimentally determine the frequency dependencies of the per-unit-length resistance and conductance of transmission lines. The experiment is intended as a supplement to the classic measurement of the transient response of a transmission line to a voltage step or pulse. In the transient experiment, an ideal (lossless) model of the transmission line is used to determine the characteristic impedance and signal propagation speed. In our experiment, the insertion losses of various coaxial cables are measured as a function of frequency from 1 to 2000 MHz. A full distributed circuit model of the transmission line that includes both conductor and dielectric losses is needed to fit the frequency dependence of the measured insertion losses. Our model assumes physically sensible frequency dependencies for the per-unit-length resistance and conductance that are determined by the geometry of the coaxial transmission lines used in the measurements.

1.
H. A.
Haus
and
J. R.
Melcher
,
Electromagnetic Fields and Energy
(
Prentice-Hall
,
New Jersey
,
1989
).
2.
David M.
Pozar
,
Microwave Engineering
, 4th ed. (
Wiley
,
New Jersey
,
2012
).
3.
Richard
Collier
,
Transmission Lines
(
Cambridge U.P
.,
New York
,
2013
).
4.
David W.
Snoke
,
Electronics: A Physical Approach
(
Pearson Education, Inc
.,
Boston
,
2015
).
5.
C. R.
Paul
, “
Areas of electrical and computer engineering education that require increased emphasis
,”
IEEE Trans. Educ.
52
,
200
201
(
2009
).
6.
H.
Nyquist
, “
Thermal agitation of electric charge in conductors
,”
Phys. Rev.
32
,
110
113
(
1928
).
7.
T. B.
Greenslade
, Jr.
, “
An intermediate experiment with a lossy transmission line
,”
Am. J. Phys.
57
,
275
276
(
1989
).
8.
C. S.
Teoh
and
L. E.
Davis
, “
A coupled pendula system as an analogy to coupled transmission lines
,”
IEEE Trans. Educ.
39
,
548
557
(
1996
).
9.
T.
Kuusela
,
J.
Hietarinta
,
K.
Kokko
, and
R.
Laiho
, “
Soliton experiments in a nonlinear electrical transmission line
,”
Eur. J. Phys.
8
,
27
33
(
1987
).
10.
H. J.
Janssen
,
L.
Beerden
, and
E. L. M.
Flerackers
, “
Interference reflection demonstrated on a lumped LC-transmission line
,”
Am. J. Phys.
56
,
225
230
(
1988
).
11.
R. I.
Rank
, “
Apparatus for teaching physics: Speed of a pulse in a transmission line
,”
Phys. Teach.
7
,
344
345
(
1969
).
12.
F.
Holuj
, “
Simple measurements involving transmission lines
,”
Am. J. Phys.
50
,
282
283
(
1982
).
13.
G. H.
Watson
, “
Transmission line exercises for the introductory physics laboratory
,”
Am. J. Phys.
63
,
423
425
(
1995
).
14.
S.-Y.
Mak
, “
Speed of electromagnetic signal along a coaxial cable
,”
Phys. Teach.
41
,
46
49
(
2003
).
15.
B. G.
Colpitts
, “
Teaching transmission lines: A project of measurement and simulation
,”
IEEE Trans. Educ.
45
,
245
252
(
2002
).
16.
J. M.
Serra
,
M. C.
Brito
,
J. M.
Alves
, and
A. M.
Vallera
, “
A wave lab inside a coaxial cable
,”
Eur. J. Phys.
25
,
581
591
(
2004
).
17.
A. L.
Shenkman
,
Transient Analysis of Electric Power Circuits Handbook
(
Springer
,
Dordrecht, NL
,
2005
).
18.
J. R.
Griffith
and
M. S.
Nakhla
, “
Time-domain analysis of lossy coupled transmission lines
,”
IEEE Trans. Microwave Theory Tech.
38
,
1480
1487
(
1990
).
19.
S. C. D.
Roy
, “
Some little-known facts about transmission lines and some new results
,”
IEEE Trans. Educ.
53
,
556
561
(
2010
).
20.
P. J.
Langlois
, “
Graphical analysis of delay line waveforms: A tutorial
,”
IEEE Trans. Educ.
38
,
27
32
(
1995
).
21.
RG58C/U datasheet: Flexible RG58 coax cable single shielded with black PVC (NC) jacket
,
Pasternack Enterprises, Inc
.,
Irvine, CA, USA
,
2017
.
22.
UT-141-HA-M17 datasheet: Semi-rigid coaxial cable
,
Micro-Coax
,
Pottstown, PA, USA
.
23.
David J.
Griffiths
,
Introduction to Electrodynamics
, 4th ed. (
Cambridge U.P
.,
New York
,
2017
).
24.
Charles
Kittel
,
Introduction to Solid State Physics
, 7th ed. (
Wiley
,
New York
,
1996
).
25.
J. S.
Bobowski
, “
Using split-ring resonators to measure the electromagnetic properties of materials: An experiment for senior physics undergraduates
,”
Am. J. Phys.
81
,
899
906
(
2013
).
26.
B.
Givot
,
J.
Krupka
,
K.
Lees
,
R.
Clarke
, and
G.
Hill
, “
Accurate measurements of permittivity and dielectric loss tangent of low loss dielectrics at frequency range 100MHz – 20GHz
,” in
2006 International Conference on Microwaves, Radar & Wireless Communications
,
Krakow
,
2006
, pp.
232
235
.
27.
J.
Krupka
,
R. G.
Geyer
,
J.
Baker-Jarvis
, and
J.
Ceremuga
, “
Measurements of the complex permittivity of microwave circuit board substrates using split dielectric resonator and reentrant cavity techniques
,” in
Seventh International Conference on Dielectric Materials, Measurements and Applications
,
Bath, UK
,
1996
, pp.
21
24
.
28.
W. R.
Humbert
and
W. R.
Scott
, Jr.
, “
A new technique for measuring the permittivity and loss tangent of cylindrical dielectric rods
,”
IEEE Microwave Guided Wave Lett.
6
,
262
264
(
1996
).
29.
W. B.
Seo
and
J. J.
Choi
, “
Dielectric measurements using Fabry-Perot open resonators at millimeter wave frequencies (26–110 GHz)
,” in
Third IEEE International Vacuum Electronics Conference
,
Monterey, CA, USA
,
2002
, pp.
373
374
.
30.
M. N.
Afsar
and
H.
Ding
, “
A novel open-resonator system for precise measurement of permittivity and loss-tangent
,”
IEEE Trans. Instrum. Meas.
50
,
402
405
(
2001
).
31.
J. S.
Bobowski
and
A. P.
Clements
, “
Permittivity and conductivity measured using a novel toroidal split-ring resonator
,”
IEEE Trans. Microwave Theory Tech.
65
,
2132
2138
(
2017
).
32.
HCA158-50J datasheet: 1-5/8″ HELIFLEX air-dielectric coaxial cable
,
Radio Frequency Systems
,
Meriden, CT, USA
,
2007
.
33.
Product datasheet: WR975 straight waveguide
,
Mega Industries
,
Gorham, ME, USA
.
34.
S. R.
Best
, “
Shunt stub line impedance matching: A wave reflection analysis tutorial
,”
IEEE Antennas Propag. Mag.
44
,
76
86
(
2002
).
35.
See supplementary material at https://doi.org/10.1119/10.0001896 for a derivation of the transient response of a lossless transmission line to a voltage step using the Laplace transform formalism.

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.