Now that fundamental quantum principles of indeterminacy and measurement have become the basis of new technologies that provide secrecy between two communicating parties, there is a need to provide teaching laboratories that illustrate how these technologies work. In this article, we describe a laboratory exercise in which students perform quantum key distribution with single photons, and see how the secrecy of the communication is ensured by the principles of quantum superposition and state projection. We used a table-top apparatus, similar to those used in correlated-photon undergraduate laboratories, to implement the Bennett-Brassard-84 protocol with polarization-entangled photons. Our experiment shows how the communication between two parties is disrupted by an eavesdropper. We use a simple quartz plate to mimic how an eavesdropper intercepts, measures, and resends the photons used in the communication, and we analyze the state of the light to show how the eavesdropper changes it.

1.
F. W.
Stauch
, “
Resource letter QI-1: Quantum information
,”
Am. J. Phys.
84
,
495
507
(
2016
).
2.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge U. P
.,
Cambridge
,
2000
).
3.
E. J.
Galvez
, “
Resource letter SPE-1: Single-photon experiments in the undergraduate laboratory
,”
Am. J. Phys.
82
,
1018
1028
(
2014
).
4.
P. A. M.
Dirac
,
The Principles of Quantum Mechanics
, 4th ed. (
Oxford U. P
.,
Oxford
,
1930
).
5.
C. A.
Fuchs
and
A.
Peres
, “
Quantum-state disturbance versus information gain: Uncertainty relations for quantum information
,”
Phys. Rev. A
53
,
2038
2045
(
1996
).
6.
S.
Loepp
and
W. K.
Wooters
,
Protecting Information: From Classical Error Correction to Quantum Cryptography
(
Cambridge U. P
.,
Cambridge
,
2006
).
7.
M.
Raymer
,
Quantum Physics
(
Oxford U. P
.,
New York
,
2017
).
8.
S.
DeVore
and
C.
Singh
, “
Development of an interactive tutorial on quantum key distribution
,” in
Proceedings of the Physics Education Research Conference
, Minneapolis, MN,
2014
, pp.
59
62
.
9.
A.
Kohnle
and
A.
Rizzoli
, “
Interactive simulations for quantum key distribution
,”
Eur. J. Phys.
38
,
035403
(
2017
).
10.
A. N.
Utama
,
L.
Jianwei
, and
M. A.
Seidler
, “
A hands-on quantum cryptography workshop for pre-university students
,”
Am. J. Phys.
(in press,
2020
).
11.
Thorlabs
, “
EDU-QCRY1 Quantum Cryptography Demonstration Kit
” <https://www.thorlabs.com>
12.
J. J.
Sakurai
,
Modern Quantum Mechanics
(
Addison Wesley
,
Reading, MA
,
1994
).
13.
W. K.
Wootters
and
W. H.
Zurek
, “
A single quantum cannot be cloned
,”
Nature
299
,
802
803
(
1982
).
14.
J. S.
Townsend
,
A Modern Approach to Quantum Mechanics
(
University Science Books
,
CA
,
2012
).
15.
M.
Beck
,
Quantum Mechanics: Theory and Experiment
(
Oxford U. P
.,
Oxford
,
2012
).
16.
C. H.
Bennett
,
G.
Brassard
,
C.
Crépeau
,
R.
Jozsa
,
A.
Peres
, and
W. K.
Wootters
, “
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels
,”
Phys. Rev. Lett.
70
,
1895
1899
(
1993
).
17.
D.
Bouwmeester
,
J.-W.
Pan
,
K.
Mattle
,
M.
Eibl
,
H.
Weinfurter
, and
A.
Zeilinger
, “
Experimental quantum teleportation
,”
Nature
390
,
575
579
(
1997
).
18.
D. H.
McIntyre
,
Quantum Mechanics: A Paradigms Approach
(
Pearson Education Inc
.,
San Francisco
,
2012
).
19.
N.
Gisin
,
G.
Ribordy
,
W.
Tittel
, and
H.
Zbinden
, “
Quantum cryptography
,”
Rev. Mod. Phys.
74
,
145
195
(
2002
).
20.
V.
Scarani
,
H.
Bechmann-Pasquinucci
,
N. J.
Cerf
,
M.
Dusek
,
N.
Lütkenhaus
, and
M.
Peev
, “
The security of practical quantum key distribution
,”
Rev. Mod. Phys.
81
,
1301
1350
(
2009
).
21.
H.-K.
Lo
,
M.
Curty
, and
K.
Tamaki
, “
Secure quantum key distribution
,”
Nat. Photon.
8
,
595
604
(
2014
).
22.
F.
Bouchard
,
K.
Heshami
,
D.
England
,
R.
Fickler
,
R. W.
Boyd
,
B.-G.
Englert
,
L. L.
Sánchez-Soto
, and
E.
Karimi
, “
Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons
,”
Quantum
2
,
111
123
(
2018
).
23.
X.-B.
Wang
, “
Beating the photon-number-splitting attacks in practical quantum cryptography
,”
Phys. Rev. Lett.
94
,
230503
(
2005
).
24.
H.-K.
Lo
,
X.
Ma
, and
K.
Chen
, “
Decoy state quantum key distribution
,”
Phys. Rev. Lett.
94
,
230504
(
2005
).
25.
T.
Kupko
,
M.
von Helversen
,
L.
Rickert
,
J.-H.
Schulze
,
A.
Strittmatter
,
M.
Gschrey
,
S.
Rodt
,
S.
Reitzenstein
, and
T.
Heindel
, “
Tools for the performance optimization of single-photon quantum key distribution
,”
NPJ Quantum Inf.
6
,
29
(
2020
).
26.
C. H.
Bennett
and
G.
Brassard
, “
Quantum cryptography: Public key distribution and coin tossing
,” in
Proceedings of IEEE International Conference on Computers, Systems and Signal Processing
,
IEEE Press
,
Bangalore
,
1984
.
27.
A.
Ekert
, “
Quantum cryptography based on Bell's theorem
,”
Phys. Rev. Lett.
67
,
661
663
(
1991
).
28.
P. G.
Kwiat
,
E.
Waks
,
A.
White
,
I.
Appelbaum
, and
P.
Eberhard
, “
Ultrabright source of polarization-entangled photons
,”
Phys. Rev. A
60
,
773
776
(
1999
).
29.
D.
Dehlinger
and
M.
Mitchell
, “
Entangled photons, nonlocality, and Bell inequalities in the undergraduate laboratory
,”
Am. J. Phys.
70
,
903
910
(
2002
).
30.
R.
Rangarajan
,
M.
Goggin
, and
P.
Kwiat
, “
Optimizing type-I polarization-entangled photons
,”
Opt. Express
17
,
18920
18933
(
2009
).
31.
E. J.
Galvez
, “
Photon quantum mechanics
,” <https://egalvez.colgate.domains/pql/>
32.
D. S.
Naik
,
C. G.
Peterson
,
A. G.
White
,
A. J.
Berglund
, and
P. G.
Kwiat
, “
Entangled state quantum cryptography: Eavesdropping on the ekert protocol
,”
Phys. Rev. Lett.
84
,
4733
4736
(
2000
).
33.
E.
Toninelli
,
B.
Ndagano
,
A.
Vallés
,
B.
Sephton
,
I.
Nape
,
A.
Ambrosio
,
F.
Capasso
,
M. J.
Padgett
, and
A.
Forbes
, “
Concepts in quantum state tomographyand classical implementation with intense light: A tutorial
,”
Adv. Opt. Photon.
11
,
67
134
(
2019
).
34.
J. F.
Clauser
,
M. A.
Horne
,
A.
Shimony
, and
R. A.
Holt
, “
Proposed experiment to test local hidden-variable theories
,”
Phys. Rev. Lett.
23
,
880
884
(
1969
).
35.
J. A.
Carlson
,
M. D.
Olmstead
, and
M.
Beck
, “
Quantum mysteries tested: An experiment implementing Hardy's test of local realism
,”
Am. J. Phys.
74
,
180
186
(
2006
).
36.
D. F. V.
James
,
P. G.
Kwiat
,
W. J.
Munro
, and
A. G.
White
, “
Measurement of qubits
,”
Phys. Rev. A
64
,
052312
(
2001
).
37.
J. B.
Altepeter
,
E. R.
Jeffrey
, and
P. G.
Kwiat
, “
Photonic state tomography
,”
Adv. At. Mol. Phys.
52
,
105
159
(
2005
).
38.
E. J.
Galvez
, “
Qubit quantum mechanics with correlated-photon experiments
,”
Am. J. Phys.
78
,
510
519
(
2010
).
39.
Kwiat Quantum Information Group,
Guide to Quantum State Tomography
” <http://research.physics.illinois.edu/QI/Photonics/Tomography/>
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.