A tutorial description of plasma waves in a cold plasma, with emphasis on their application in plasma-based electron accelerators, is presented. The basic physics of linear plasma oscillations and waves and the principle of electron acceleration in a plasma wave are discussed without assuming any previous knowledge of plasma physics. It is shown that estimating key parameters for plasma acceleration such as the maximum or “wave breaking” amplitude and the corresponding energy gained by electrons “surfing” the wave requires a relativistic and nonlinear analysis. This can be done with little mathematical complexity by using a Lorentz transformation to a frame co-moving at the phase velocity of the wave. The transformation reduces the problem to a second-order ordinary differential equation as originally found by Chian [Plasma Phys. 21, 509 (1979)] so that the analysis can exploit the analogy with the mechanical motion of a particle in a potential well.

1.
R. P.
Feynman
,
R. B.
Leighton
, and
M.
Sands
,
The Feynman Lectures on Physics. Vol. 2: Mainly Electromagnetism and Matter
(
Addison-Wesley
,
Reading, MA
,
1964
).
2.
F. S.
Crawford
, Jr.
,
Waves, Berkeley Physics Course
, Vol.
3
(
McGraw-Hill
,
New York, NY
,
1968
).
3.
R. A.
Gerwin
, “
Initial value solution of Maxwell's equations in cold plasma
,”
Am. J. Phys.
30
,
711
715
(
1962
).
4.
R.
Mirman
, “
Oscillations in single and colliding plasmas
,”
Am. J. Phys.
32
,
690
699
(
1964
).
5.
F.
Arbab
and
P.
Rosen
, “
Dispersion relation for a longitudinal plasma wave in the presence of a magnetic field
,”
Am. J. Phys.
33
,
556
562
(
1965
).
6.
H. C.
Chen
, “
Compressivity tensor and dispersion relation for a plasma
,”
Am. J. Phys.
37
,
1022
1028
(
1969
).
7.
D. V.
Giovanielli
and
R. P.
Godwin
, “
Optics in laser–produced plasmas
,”
Am. J. Phys.
43
,
808
817
(
1975
).
8.
P.
Halevi
, “
Plane electromagnetic waves in material media: Are they transverse waves?
,”
Am. J. Phys.
48
,
861
867
(
1980
).
9.
B. A.
Lippmann
, “
Thomson scattering and plasma oscillations
,”
Am. J. Phys.
56
,
725
726
(
1988
).
10.
A. D.
Boozer
, “
Simulating a one-dimensional plasma
,”
Am. J. Phys.
78
,
580
584
(
2010
).
11.
A. C. L.
Chian
, “
Nonlinear travelling longitudinal waves in cold plasmas
,”
Plasma Phys.
21
,
509
530
(
1979
).
12.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge U. P
.,
Cambridge
,
1973
).
13.

It is worth noticing that the frequency of a longitudinal wave is a zero of ε(ω) also for more general expressions than Eq. (20). For example, longitudinal waves also exist in a dielectric medium that can be described (at least in some frequency range) by ε(ω)=1ωp2/(ω2ω02) (see, e.g., Ref. 1, Sec. 32-8; Ref. 2, Sec. ST9) where ω0 is the frequency of bound electrons and friction has been neglected for simplicity; posing ε(ω)=0 yields ω=(ω02+ωp2)1/2 for the frequency of these waves, which provide a first simple classical representation of bulk polaritons in solid state physics.

14.
J. D.
Jackson
,
Classical Electrodynamics
, 2nd ed. (
Wiley
,
New York, NY
,
1975
).
15.
F.
Chen
,
Introduction to Plasma Physics and Controlled Fusion
, 2nd ed., Vol.
1
(
Springer
,
Cham
,
2006
).
16.

Although not strictly relevant in the present context, it is curious to notice that ultracold plasmas with temperatures as low as 102 K, or 107 eV, can be created via field ionization (Ref. 40).

17.
T.
Katsouleas
, “
Electrons hang ten on laser wake
,”
Nature
431
,
515
516
(
2004
).
18.
C.
Joshi
, “
Plasma accelerators
,”
Sci. Am.
294
,
40
47
(
2006
).
19.
T.
Tajima
and
J. M.
Dawson
, “
Laser electron accelerator
,”
Phys. Rev. Lett.
43
,
267
270
(
1979
).
20.
F.
Grüner
, “
Viewpoint: Shooting ahead with wakefield acceleration
,”
Physics
12
,
19
(
2019
).
21.
I.
Blumenfeld
,
C. E.
Clayton
,
F.-J.
Decker
,
M. J.
Hogan
,
C.
Huang
,
R.
Ischebeck
,
R.
Iverson
,
C.
Joshi
,
T.
Katsouleas
,
N.
Kirby
et al, “
Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator
,”
Nature
445
,
741
744
(
2007
).
22.
M.
Litos
,
E.
Adli
,
W.
An
,
C.
Clarke
,
C.
Clayton
,
S.
Corde
,
J.
Delahaye
,
R.
England
,
A.
Fisher
,
J.
Frederico
et al, “
High-efficiency acceleration of an electron beam in a plasma wakefield accelerator
,”
Nature
515
,
92
95
(
2014
).
23.
E.
Adli
,
A.
Ahuja
,
O.
Apsimon
,
R.
Apsimon
,
A.-M.
Bachmann
,
D.
Barrientos
,
F.
Batsch
,
J.
Bauche
,
V. B.
Olsen
,
M.
Bernardini
et al, “
Acceleration of electrons in the plasma wakefield of a proton bunch
,”
Nature
561
,
363
367
(
2018
).
24.
A. J.
Gonsalves
,
K.
Nakamura
,
J.
Daniels
,
C.
Benedetti
,
C.
Pieronek
,
T. C. H.
de Raadt
,
S.
Steinke
,
J. H.
Bin
,
S. S.
Bulanov
,
J.
van Tilborg
,
C. G. R.
Geddes
,
C. B.
Schroeder
,
C.
Tóth
,
E.
Esarey
,
K.
Swanson
,
L.
Fan-Chiang
,
G.
Bagdasarov
,
N.
Bobrova
,
V.
Gasilov
,
G.
Korn
,
P.
Sasorov
, and
W. P.
Leemans
, “
Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide
,”
Phys. Rev. Lett.
122
,
084801
(
2019
).
25.
A. I.
Akhiezer
and
R. V.
Polovin
, “
Theory of wave motion of an electron plasma
,”
Sov. Phys. JETP
3
,
696
705
(
1956
), available at http://www.jetp.ac.ru/cgi-bin/e/index/r/30/5/p915?a=list.
26.
A.
Decoster
, “
Nonlinear travelling waves in a homogeneous cold collisionless plasma
,”
Phys. Rep.
47
,
285
422
(
1978
).
27.
P.
Shukla
,
N.
Rao
,
M.
Yu
, and
N.
Tsintsadze
, “
Relativistic nonlinear effects in plasmas
,”
Phys. Rep.
138
,
1
149
(
1986
).
28.
E.
Esarey
,
P.
Sprangle
,
J.
Krall
, and
A.
Ting
, “
Overview of plasma-based accelerator concepts
,”
IEEE Trans. Plasma Sci.
24
,
252
288
(
1996
).
29.
E.
Esarey
and
M.
Pilloff
, “
Trapping and acceleration in nonlinear plasma waves
,”
Phys. Plasmas
2
,
1432
1436
(
1995
).
30.

It may be interesting to notice that for waves with super-luminal phase speed vp>c, in a moving frame with β=c/vp the fields are space-independent. The Lorentz transformation to such frame can also be helpful to simplify calculations (Refs. 26 and 41).

31.

In Chian's paper, an immobile ion background is assumed and this is also the only case here considered. A generalization of Chian's equation to mobile ions is given by Decoster (Ref. 26).

32.

For the reader's curiosity, more recently the co-moving frame technique has been also used for the nonlinear analysis of a plasma wave in the context of Born-Infeld electrodynamics (Ref. 42).

33.
E. M.
Purcell
,
Electricity and Magnetism
, Berkeley Physics course Vol.
2
(
McGraw-Hill
,
New York
,
1965
).
34.

We use the term “test electron” with the usual meaning in electrodynamics, i.e., the electron moves in the wave field without affecting it.

35.

The issue of electrons “injection,” i.e., controlling the initial conditions in order to achieve the maximum energy gain, is crucial to laser-plasma accelerators but it will be not discussed here. Electron “extraction” when the maximum energy has been reached occurs naturally if the electron has got up to the end of the plasma wave in the laboratory; in fact, it must be kept in mind that traveling for half a wavelength in S corresponds to a much longer distance traveled in S (see Sec. V).

36.

The number of ions along a segment of length L oriented along the boost direction x must be the same in both frames, hence n0L=n0L. Since the length L is contracted to L/γp, it follows that n0=γpn0.

37.
E.
Esarey
,
C. B.
Schroeder
, and
W. P.
Leemans
, “
Physics of laser-driven plasma-based electron accelerators
,”
Rev. Mod. Phys.
81
,
1229
1285
(
2009
).
38.
J.
Dawson
, “
One-dimensional plasma model
,”
Phys. Fluids
5
,
445
459
(
1962
).
39.
A.
Macchi
,
A Superintense Laser-Plasma Interaction Theory Primer
, Springer Briefs in Physics (
Springer
,
Dordrecht
,
2013
).
40.
T. C.
Killian
, “
Ultracold neutral plasmas
,”
Science
316
,
705
708
(
2007
).
41.
B. B.
Winkles
and
O.
Eldridge
, “
Self–consistent electromagnetic waves in relativistic Vlasov plasmas
,”
Phys. Fluids
15
,
1790
1800
(
1972
).
42.
D. A.
Burton
,
R. M. G. M.
Trines
,
T. J.
Walton
, and
H.
Wen
, “
Exploring Born–Infeld electrodynamics using plasmas
,”
J. Phys. A: Math. Theor.
44
,
095501
(
2011
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.