We present a simple derivation of the Hellmann–Feynman theorem at finite temperature. We illustrate its validity by considering three relevant examples, which can be used in quantum mechanics lectures: the one-dimensional harmonic oscillator, the one-dimensional Ising model, and the Lipkin model. We show that the Hellmann–Feynman theorem allows one to calculate expectation values of operators that appear in the Hamiltonian. This is particularly useful when the total free energy is available, but there is no direct access to the thermal average of the operators themselves.

1.
H.
Hellmann
, “
Zur Rolle der kinetischen Elektronenenergie für die zwischenatomaren Kräfte
,”
Z. Phys.
85
(
3
),
180
190
(
1933
).
2.
R. P.
Feynman
, “
Forces in molecules
,”
Phys. Rev.
56
,
340
343
(
1939
).
3.
D. J.
Griffiths
,
Introduction to Quantum Mechanics
, 2nd ed. (
Prentice Hall
,
Englewood Cliffs, NJ
,
1995
).
4.
P. W.
Atkins
and
R.
Friedman
,
Molecular Quantum Mechanics
, 5th ed. (
Oxford U.P
.,
Oxford
,
2011
).
5.
Z.
Dongpei
, “
Proof of the quantum virial theorem
,”
Am. J. Phys.
54
(
3
),
267
270
(
1986
).
6.
Y.
İpekoğlu
and
S.
Turgut
, “
An elementary derivation of the quantum virial theorem from Hellmann–Feynman theorem
,”
Eur. J. Phys.
37
(
4
),
045405-1
045405-5
(
2016
).
7.
S. T.
Epstein
, “
Note on perturbation theory
,”
Am. J. Phys.
22
(
9
),
613
614
(
1954
).
8.
S.
Brajamani Singh
and
C. A.
Singh
, “
Extensions of the Feynman–Hellman theorem and applications
,”
Am. J. Phys.
57
(
10
),
894
899
(
1989
).
9.
R.
Almeida
,
H.
Díez y Riega
, and
D. A.
Morales
, “
On the Hellmann–Feynman theorem and the corrections to the energy in the Rayleigh–Schrödinger perturbation theory
,”
J. Math. Chem.
28
(
1
),
201
206
(
2000
).
10.
O. E.
Alon
and
L. S.
Cederbaum
, “
Hellmann–Feynman theorem at degeneracies
,”
Phys. Rev. B
68
,
033105-1
033105-4
(
2003
).
11.
D. J.
Klein
and
P. L.
DeVries
, “
Satisfying certain matrix element formulas
,”
J. Chem. Phys.
68
(
1
),
160
162
(
1978
).
12.
E. A.
Castro
and
F. M.
Fernández
, “
Comment on the off-diagonal Hellmann–Feynman formula
,”
J. Chem. Phys.
73
(
9
),
4711
4711
(
1980
).
13.
P.
Ziesche
,
K.
Kunze
, and
B.
Milek
, “
Generalisation of the Hellmann–Feynman theorem to Gamow states
,”
J. Phys. A
20
(
10
),
2859
2864
(
1987
).
14.
S.
Balasubramanian
, “
Hellmann–Feynman theorem in a linear superposition of energy eigenstates
,”
Am. J. Phys.
62
(
12
),
1116
1117
(
1994
).
15.
J. G.
Esteve
,
F.
Falceto
, and
C.
García Canal
, “
Generalization of the Hellmann–Feynman theorem
,”
Phys. Lett. A
374
(
6
),
819
822
(
2010
).
16.
W. A.
McKinley
, “
Hellmann–Feynman theorems in classical and quantum mechanics
,”
Am. J. Phys.
39
(
8
),
905
910
(
1971
).
17.
E. F.
Hayes
and
R. G.
Parr
, “
Time–dependent Hellmann–Feynman theorems
,”
J. Chem. Phys.
43
(
5
),
1831
1832
(
1965
).
18.
S. T.
Epstein
, “
Time-dependent Hellmann–Feynman theorems for variational wave functions
,”
J. Chem. Phys.
45
(
1
),
384
384
(
1966
).
19.
X.
Sun
, “
Generalized Hellmann–Feynman theorem and its applications
,”
Chin. Phys. Lett.
33
(
12
),
123601-1
123601-5
(
2016
).
20.
C.
Sánchez del Río
, “
Evaluation of some averages for the hydrogen atom
,”
Am. J. Phys.
50
(
6
),
556
557
(
1982
).
21.
H. S.
Valk
, “
Radial expectation values for central force problems and the Feynman–Hellman theorem
,”
Am. J. Phys.
54
(
10
),
921
923
(
1986
).
22.
D. D.
Fitts
,
Principles of Quantum Mechanics: As Applied to Chemistry and Chemical Physics
(
Cambridge U.P.
,
Cambridge
,
1999
).
23.
F.
Jensen
,
Introduction to Computational Chemistry
, 2nd ed. (
John Wiley-Sons
,
London
,
2007
).
24.
C.
Quigg
and
J. L.
Rosner
, “
Quantum mechanics with applications to quarkonium
,”
Phys. Rep.
56
(
4
),
167
235
(
1979
).
25.
D. B.
Lichtenberg
, “
Application of a generalized Feynman–Hellmann theorem to bound-state energy levels
,”
Phys. Rev. D
40
(
12
),
4196
4198
(
1989
).
26.
S. A.
Vitiello
, “
Efficient implementation of the Hellmann–Feynman theorem in a diffusion Monte Carlo calculation
,”
J. Chem. Phys.
134
(
5
),
054102-1
054102-6
(
2011
).
27.
I.
Vidaña
,
A.
Polls
, and
C.
Providência
, “
Nuclear symmetry energy and the role of the tensor force
,”
Phys. Rev. C
84
,
062801-1
062801-4
(
2011
).
28.
I.
Vidaña
,
A.
Polls
, and
V.
Durant
, “
Role of correlations in spin-polarized neutron matter
,”
Phys. Rev. C
94
,
054006-1
054006-6
(
2016
).
29.
A.
Cabrera
and
A.
Calles
, “
Equivalente del teorema de Hellman–Feynman a temperatura finita
,”
Rev. Mex. Fis.
36
,
385
392
(
1990
).
30.
H.
Fan
and
B.
Chen
, “
Generalized Feynman–Hellmann theorem for ensemble average values
,”
Phys. Lett. A
203
(
2
),
95
101
(
1995
).
31.
D.
Popov
, “
Extension of the quantum virial and Hellmann–Feynman theorems to the quantum statistical averages
,”
Int. J. Quantum Chem.
69
(
2
),
159
165
(
1998
).
32.
D.
Rai
, “
Hellmann–Feynman theorem in a mixed ensemble
,”
Phys. Rev. A
75
,
032514-1
032514-6
(
2007
).
33.
K. V.
Kheruntsyan
,
D. M.
Gangardt
,
P. D.
Drummond
, and
G. V.
Shlyapnikov
, “
Pair correlations in a finite-temperature 1D Bose gas
,”
Phys. Rev. Lett.
91
(
4
),
040403-1
040403-4
(
2003
).
34.
C.
Bouchard
,
C. C.
Chang
,
T.
Kurth
,
K.
Orginos
, and
A.
Walker-Loud
, “
On the Feynman–Hellmann theorem in quantum field theory and the calculation of matrix elements
,”
Phys. Rev. D
96
,
014504-1
014504-6
(
2017
).
35.
A. A.
Shanenko
,
T. S.
Biró
, and
V. D.
Toneev
, “
Quasiparticles and thermodynamical consistency
,”
Acta Phys. Hung. A
18
(
1
),
91
100
(
2003
).
36.
S.
Tan
, “
Large momentum part of a strongly correlated Fermi gas
,”
Ann. Phys.
323
(
12
),
2971
2986
(
2008
).
37.
H.
Hu
,
X.-J.
Liu
, and
P. D.
Drummond
, “
Universal contact of strongly interacting fermions at finite temperatures
,”
New J. Phys.
13
(
3
),
035007-1
035007-27
(
2011
).
38.
J. E.
Drut
, “
Improved lattice operators for nonrelativistic fermions
,”
Phys. Rev. A
86
(
1
),
013604-1
013604-11
(
2014
).
39.
D. T.
Son
, e-print arxiv:0707.1851.
40.
B.-B.
Wei
, “
Linking phase transitions and quantum entanglement at arbitrary temperature
,”
Phys. Rev. A
97
,
042115-1
042115-9
(
2018
).
41.
E.
Ising
, “
Beitrag zur Theorie des Ferromagnetismus
,”
Z. Phys.
31
(
1
),
253
258
(
1925
).
42.
H. J.
Lipkin
,
N.
Meshkov
, and
A. J.
Glick
, “
Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory
,”
Nucl. Phys.
62
(
2
),
188
198
(
1965
).
43.
R. K.
Pathria
,
Statistical Mechanics
(
Pergamon Press
,
New York
,
1986
).
44.
R. J.
Baxter
,
Exactly Solved Models in Statistical Mechanics
(
Academic Press
,
New York
,
1982
).
45.
S. Y.
Tsay Tzeng
,
P. J.
Ellis
,
T. T. S.
Kuo
, and
E.
Osnes
, “
Finite-temperature many-body theory with the Lipkin model
,”
Nucl. Phys. A
580
(
2
),
277
290
(
1994
).
46.
G.
and
S. D.
Leo
, “
Analytical and numerical analysis of the complete Lipkin–Meshkov–Glick hamiltonian
,”
Int. J. Mod. Phys. E
27
(
05
),
1850039
(
2018
).
47.
D. H.
Feng
,
R.
Gilmore
, and
L. M.
Narducci
, “
Variational description of the nuclear free energy
,”
Phys. Rev. C
19
(
3
),
1119
1126
(
1979
).
48.
R.
Rossignoli
and
A.
Plastino
, “
Quasispin seniority and the variational description of the nuclear free energy
,”
Phys. Rev. C
30
(
4
),
1360
1362
(
1984
).
49.
M.
Pons
, “
The Lipkin model at finite temperature
,” Bachelor's thesis (
University of Barcelona
,
2018
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.