A biased ball rolled and spun on a horizontal surface exhibits interesting dynamics. We investigate the motion of a truncated billiard ball, via experiments, analytical methods, and numerical solutions of the equations of motion for a biased sphere rolling without slipping. Solutions are identified where the center of mass moves in a circular or a square path, and we investigate other quasi-periodic motions of the ball.

1.
M. N.
Brearley
and
B. A.
Bolt
, “
The dynamics of a bowl
,”
Q. J. Mech. Appl. Math.
11
,
351
363
(
1958
).
2.
M. N.
Brearley
, “
The motion of a biased bowl with perturbing projection conditions
,”
Math. Proc. Cambridge Philos. Soc.
57
,
131
151
(
1961
).
3.
Rod
Cross
, “
The trajectory of a ball in lawn bowls
,”
Am. J. Phys.
66
,
735
738
(
1998
).
4.
David P.
Jackson
,
David
Mertens
, and
Brett J.
Pearson
, “
Hurricane balls: A rigid-body-motion project for undergraduates
,”
Am. J. Phys.
83
,
959
968
(
2015
).
5.
H. K.
Moffatt
,
Y.
Shimomura
, and
M.
Branicki
, “
Dynamics of an axisymmetric body spinning on a horizontal surface. I. Stability and the gyroscopic approximation
,”
Proc. R. Soc. London A
460
,
3643
3672
(
2004
).
6.
Rod
Cross
, “
Spin experiments with a biased ball
,”
Eur. J. Phys.
40
,
055003
(
2019
).
7.
A.
Kilin
and
E.
Pivovarova
, “
The rolling motion of a truncated ball without slipping and spinning on a plane
,”
Regul. Chaotic Dyn.
22
,
298
317
(
2017
).
8.
M. A.
Jalali
,
M. S.
Sarebangholi
, and
M.-R.
Alam
, “
Terminal retrograde turn of rolling rings
,”
Phys. Rev. E
92
,
032913
(
2015
).
9.
A. V.
Borisov
,
A. A.
Kilin
, and
Y. L.
Karavaev
, “
Retrograde motion of a rolling disk
,”
Phys. Usp.
60
,
931
934
(
2017
).
10.
Cliff
Frohlich
, “
What makes bowling balls hook?
,”
Am. J. Phys.
72
,
1170
1177
(
2004
).
11.
Kevin
King
,
N. C.
Perkins
,
Hugh
Churchill
,
Ryan
McGinnis
,
Ryan
Doss
, and
Ron
Hickland
, “
Bowling ball dynamics revealed by miniature wireless MEMS inertial measurement unit
,”
Sports Eng.
13
,
95
104
(
2011
).
12.
Rod
Cross
, “
A hemispherical tippe top
,”
Eur. J. Phys.
41
,
025001
(
2020
).
13.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes in C
,
2nd ed.
(
Cambridge U. P
.,
New York
,
1992
).
14.
See supplementary material at http://dx.doi.org/10.1119/10.0000905 for movies of the motion of the truncated billiard ball filmed at 300 fps. The visualisations produced by the code, as well as the supplementary videos, are at <http://www.physics.usyd.edu.au/∼wheat/biased-ball/>.
15.
E. T.
Whittaker
,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 2nd
ed.
(
Cambridge U. P
.,
Cambridge, UK
,
1917
.

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.