The magnetostrictive effect is an important topic for scientific research as well as for technological applications. Since magnetostriction constitutes an important property of emerging smart materials, experimental investigations as well as theoretical discussions of the magnetostrictive effect are of great educational value. Quantitative measurements of the magnetostrictive effect are usually technically sophisticated or not related to real applications or everyday materials. The objective of this article is to describe a simple and low-cost experiment for the qualitative and quantitative investigation of magnetostrictive characteristics employing magnetostrictive laser deflection and optical amplification. Measurements are performed for precut magnetostrictive materials found in electronic article surveillance tags. Comparative theoretical calculations for magnetostrictive cantilever beams prove the quality of the experimental approach. The described method for magnetostriction measurements has been developed as a part of the Scientific Outreach Project within the Collaborative Research Centre (CRC) 1261 “Magnetoelectric Sensors.”

1.
P. J.
Bennett
, “
Noise with particular reference to transformers
,”
J. Inst. Electr. Eng.
8
,
163
165
(
1962
).
2.
H.
Kwun
and
K. A.
Bartels
, “
Magnetostrictive sensor technology and its applications
,”
Ultrasonics
36
,
171
178
(
1998
).
3.
H.
Janocha
,
Actuators: Basics and Applications
, 1st ed. (
Springer
,
Berlin
,
2004
), pp.
284
285
.
4.
G.
Herzer
, “
Magnetoelastic sensors for electronic surveillance
,”
Sens. Lett.
5
,
259
262
(
2007
).
5.
J.
Hino
and
G.
Sandoz
, “
A demonstration unit for magnetostriction
,”
Am. J. Phys.
18
,
515
516
(
1950
).
6.
T.
Kwaaitaal
, “
The measurement of small magnetostrictive effects by an interferometric method
,”
J. Magn. Magn. Mater.
6
,
290
294
(
1977
).
7.
T. J.
Davis
and
G. I.
Opat
, “
Elastic vibrations of rods and Poisson's ratio
,”
Am. J. Phys.
51
,
161
163
(
1983
).
8.
H. A.
Daw
and
R. J.
Liefeld
, “
Driven singing aluminum rods
,”
Am. J. Phys.
66
,
639
641
(
1998
).
9.
R.
Adhikari
,
R.
Kaundal
,
A.
Sarkar
,
P.
Rana
, and
A. K.
Das
, “
The cantilever beam magnetometer: A simple teaching tool for magnetic characterization
,”
Am. J. Phys.
80
,
225
231
(
2012
).
10.
C. L.
Ladera
,
G.
Donoso
, and
J. H.
Contreras
, “
Magnetostriction measured by holographic interferometry with the simple and inexpensive arrowhead setup
,”
Eur. J. Phys.
33
,
373
383
(
2012
).
11.
S.
Marauska
,
R.
Jahns
,
H.
Greve
,
E.
Quandt
,
R.
Knöchel
, and
B.
Wagner
, “
MEMS magnetic field sensor based on magnetoelectric composites
,”
J. Micromech. Microeng.
22
,
065024
(
2012
).
12.
E.
Quandt
and
A.
Ludwig
, “
Magnetostrictive actuation in microsystems
,”
Sens. Actuator
81
,
275
280
(
2000
).
13.
G.
Reyne
, “
Electromagnetic actuation for MOEMS, examples, advantages and drawbacks of MAGMAS
,”
J. Magn. Magn. Mater.
242–245
,
1119
1125
(
2002
).
14.
Q.
Cao
,
D.
Chen
,
Q.
Lu
,
G.
Tang
,
J.
Yan
,
Z.
Zhu
,
B.
Xu
,
R.
Zhao
, and
X.
Zhang
, “
Modeling and experiments of a laminated magnetostrictive cantilever beam
,”
Adv. Mech. Eng.
7
,
1
11
(
2015
).
15.
D.
Halliday
,
R.
Resnick
, and
J.
Walker
,
Fundamentals of Physics
, 8th ed. (
John Wiley & Sons
,
Hoboken, NJ
,
2007
), p.
589
.
16.
W. D.
Callister
,
Fundamentals of Materials Science and Engineering
, 5th ed. (
John Wiley & Sons
,
New York, NY
,
2001
), pp.
153
158
.
17.
V. H.
Guerrero
and
R. C.
Wetherhold
, “
Magnetostrictive bending of cantilever beams and plates
,”
J. Appl. Phys.
94
,
6659
6666
(
2003
).
18.
H. J.
Butt
,
B.
Capella
, and
M.
Kappl
, “
Force measurements with the atomic force microscope: Technique, interpretation and applications
,”
Surf. Sci. Rep.
59
,
1
152
(
2005
).
19.
G.
Herzer
, “
Magnetomechanical damping in amorphous ribbons with uniaxial anisotropy
,”
Mater. Sci. Eng. A
226–228
,
631
635
(
1997
).
20.
G.
Herzer
, “
Der große Lauschangriff auf Ladendiebe
,”
Physica B
57
,
43
48
(
2001
).
21.
M.
Silva
,
S.
Reis
,
C. S.
Lehmann
,
P.
Martins
,
S.
Lanceros-Mendez
,
A.
Lasheras
,
J.
Gutierrez
, and
J. M.
Barandiaran
, “
Optimization of the magnetoelectric response of poly(vinylidene fluoride)/epoxy/Vitrovac laminates
,”
Appl. Mater. Interface
5
,
10912
10919
(
2013
).
22.

For the given materials used in the construction of the magnetostrictive cantilever and related values of Poisson's ratio ν, the exact value for the stiffness ratio is χ=57,20, see Eq. (4). Neglecting Poisson's ratio ν in Eq. (4), the approximated value is χ=60,92. Applying Eq. (6) for the given setup and approximated value for the stiffness ratio χ a maximum displacement Δmsmax,theo=24.16μm is obtained for a film thickness of tf,opt=86.70μm. Consequently, for the given materials the approximation seems appropriate because in each case the ideal cantilever would be made of N=34 amorphous metallic strips.

23.
C. E.
Carraher
,
Carraher's Polymer Chemistry
, 9th ed. (
CRC Press
,
Boca Raton, FL
,
2014
), pp.
116
120
.
24.
D. M.
Allen
and
T. N.
Talib
, “
Electrolytic photoetching of Vitrovac 6025 for the production of magnetic recording heads
,”
Precis. Eng.
6
,
125
128
(
1984
).
25.
S.
Timoshenko
, “
Analysis of Bi-metal thermostats
,”
J. Opt. Soc. Am.
11
,
233
255
(
1925
).
26.
J. D.
Livingston
, “
Magnetomechanical properties of amorphous metals
,”
Phys. Status Solidi
70
,
591
596
(
1982
).
27.
N.
Bai
and
G.
Yun
, “
Analysis of film strain and stress in a film-substrate cantilever system
,”
Sci. China. Ser. G
51
,
1357
1366
(
2008
).
28.
C.
Zamponi
,
M.
Wuttig
, and
E.
Quandt
, “
Ni-Ti-AG shape memory thin films
,”
Scr. Mater
56
,
1075
1077
(
2007
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.